Synthesis and analysis of linear and nonlinear acoustical vortices.

Acoustical screw dislocations are synthesized in various configurations with a versatile experimental setup. The experimental setup is based on the inverse filter technique and allows one to synthesize one or more acoustical vortices with a chosen width, position, and topological charge. An interesting feature of this experimental facility to study screw dislocation behavior is the direct measurement in amplitude and phase. This characteristic is used to develop an original method of decomposition of an acoustical vortex field in order to analyze the acoustical vortices. Moreover, the behaviors of two acoustical vortices of the same or opposite charge have been studied experimentally and compared to theoretical laws.

[1]  William Whewell XI. Essay towards a first approximation to a map of cotidal lines , 1833, Philosophical Transactions of the Royal Society of London.

[2]  M. Berry,et al.  Dislocations in wave trains , 1974, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[3]  M. V. Berry,et al.  Waves and Thom's theorem , 1976 .

[4]  Y. Zel’dovich,et al.  Principles of phase conjugation , 1985 .

[5]  S. Chu Laser cooling of neutral atoms , 1990 .

[6]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[7]  G. V. Uspleniev,et al.  The Phase Rotor Filter , 1992 .

[8]  Mikhail V. Vasnetsov,et al.  Screw Dislocations in Light Wavefronts , 1992 .

[9]  Guy Indebetouw,et al.  Optical Vortices and Their Propagation , 1993 .

[10]  J. P. Woerdman,et al.  Astigmatic laser mode converters and transfer of orbital angular momentum , 1993 .

[11]  Mikhail V. Vasnetsov,et al.  Optics of light beams with screw dislocations , 1993 .

[12]  Grover A. Swartzlander,et al.  Propagation dynamics of optical vortices , 1997 .

[13]  Z. Bouchal,et al.  Self-reconstruction of a distorted nondiffracting beam , 1998 .

[14]  E. Wright,et al.  Linear optical vortices , 1999 .

[15]  J L Thomas,et al.  Time reversal and the inverse filter. , 2000, The Journal of the Acoustical Society of America.

[16]  Y. Schechner,et al.  Propagation-invariant wave fields with finite energy. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[17]  M. S. Soskin,et al.  Chapter 4 - Singular optics , 2001 .

[18]  David G Grier,et al.  Structure of optical vortices. , 2003, Physical review letters.

[19]  Régis Marchiano,et al.  Pseudo angular momentum and topological charge conservation for nonlinear acoustical vortices. , 2003, Physical review letters.

[20]  Alex Meyer,et al.  Optoacoustic generation of a helicoidal ultrasonic beam , 2004 .