Electrically addressable multistate volatile memory with flip-flop and flip-flap-flop logic circuits on a solid support.
暂无分享,去创建一个
Leila Motiei | Graham de Ruiter | Noa Oded | Milko E van der Boom | Noa Oded | M. E. van der Boom | G. de Ruiter | Leila Motiei | Joyanta Choudhury | J. Choudhury
[1] Subodh Kumar,et al. Superimposed molecular keypad lock and half-subtractor implications in a single fluorophore. , 2009, Chemical communications.
[2] Bonnie A. Sheriff,et al. A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre , 2007, Nature.
[3] He Tian,et al. An electrochemical/photochemical information processing system using a monolayer-functionalized electrode. , 2006, Chemical communications.
[4] Amitava Das,et al. A simple chemosensor for Hg2+ and Cu2+ that works as a molecular keypad lock. , 2008, Chemical communications.
[5] Gongxuan Lu,et al. An Anthracene-Based Chemosensor for Multiple Logic Operations at the Molecular Level , 2009 .
[6] Alberto Credi,et al. Moleküle, die Entscheidungen treffen , 2007 .
[7] Milko E van der Boom,et al. Chemical communication between metal-complex-based monolayers. , 2008, Angewandte Chemie.
[8] M. Lahav,et al. Electrochromic behavior of a self-propagating molecular-based assembly. , 2009, Journal of the American Chemical Society.
[9] Hyoyoung Lee,et al. Molecular monolayer nonvolatile memory with tunable molecules. , 2009, Angewandte Chemie.
[10] David R Walt,et al. Intelligent medical diagnostics via molecular logic. , 2009, Journal of the American Chemical Society.
[11] Uwe Pischel,et al. Chemical approaches to molecular logic elements for addition and subtraction. , 2007, Angewandte Chemie.
[12] Uwe Pischel,et al. Advanced molecular logic with memory function. , 2010, Angewandte Chemie.
[13] Milko E van der Boom,et al. Optical sensing of parts per million levels of water in organic solvents using redox-active osmium chromophore-based monolayers. , 2006, Journal of the American Chemical Society.
[14] Sajjan G. Shiva,et al. Flip-Flops for Multiple-Valued Logic , 1976, IEEE Transactions on Computers.
[15] Bernadine O. F. McKinney,et al. Molecular computational elements encode large populations of small objects , 2006, Nature materials.
[16] Stanley L. Hurst,et al. Multiple-Valued Logic—its Status and its Future , 1984, IEEE Transactions on Computers.
[17] Graham de Ruiter,et al. Sequential logic operations with surface-confined polypyridyl complexes displaying molecular random access memory features. , 2010, Angewandte Chemie.
[18] David Margulies,et al. Fluorescein as a model molecular calculator with reset capability , 2005, Nature materials.
[19] M Stojcev,et al. Logic and Computer Design Fundamentals , 1998 .
[20] Alberto Credi,et al. Photochemical switching of luminescence and singlet oxygen generation by chemical signal communication. , 2009, Chemical communications.
[21] Uwe Pischel,et al. Molekulare Logik mit Speicherfunktion , 2010 .
[22] R. Levine,et al. Redox-Executed Logic Operations through the Reversible Voltammetric Response Characteristics of Electroactive Self-Assembled Monolayers , 2010 .
[23] F Remacle,et al. Transcending binary logic by gating three coupled quantum dots. , 2007, Nano letters.
[24] A. Gulino,et al. Self-propagating assembly of a molecular-based multilayer. , 2008, Journal of the American Chemical Society.
[25] Alberto Credi,et al. Multistable Self-Assembling System with Three Distinct Luminescence Outputs: Prototype of a Bidirectional Half Subtractor and Reversible Logic Device , 2010 .
[26] Uwe Pischel,et al. Multivalued Logic with a Tristable Fluorescent Switch , 2009 .
[27] Joakim Andréasson,et al. An all-photonic molecular keypad lock. , 2009, Chemistry.
[28] Juyoung Yoon,et al. Fluorescent molecular logic gates using microfluidic devices. , 2008, Angewandte Chemie.
[29] Alberto Credi,et al. All-optical integrated logic operations based on chemical communication between molecular switches. , 2009, Chemistry.
[30] Thomas A. Moore,et al. All‐Photonic Molecular XOR and NOR Logic Gates Based on Photochemical Control of Fluorescence in a Fulgimide–Porphyrin–Dithienylethene Triad , 2007 .
[31] George Boole,et al. An Investigation of the Laws of Thought: Frontmatter , 2009 .
[32] Fernando Pina,et al. Open-Chain Polyamine Ligands Bearing an Anthracene Unit − Chemosensors for Logic Operations at the Molecular Level , 2001 .
[33] H. Tian,et al. A fluorophore capable of crossword puzzles and logic memory. , 2007, Angewandte Chemie.
[34] Francoise Remacle,et al. Electrochemically driven sequential machines: an implementation of copper rotaxanes. , 2009, Chemistry.
[35] Uwe Pischel,et al. Chemische Strategien für den Aufbau molekularer Logikelemente zur Addition und Subtraktion , 2007 .
[36] M. Amelia,et al. A simple unimolecular multiplexer/demultiplexer. , 2008, Angewandte Chemie.
[37] A. P. de Silva,et al. Molecular logic and computing. , 2007, Nature nanotechnology.
[38] Igor F. Perepichka,et al. Handbook of Thiophene-Based Materials , 2009 .
[39] Uwe Pischel,et al. Smart molecules at work--mimicking advanced logic operations. , 2010, Chemical Society reviews.
[40] A. Credi. Molecules that make decisions. , 2007, Angewandte Chemie.
[41] K. Szaciłowski. Digital information processing in molecular systems. , 2008, Chemical reviews.
[42] J. Andréasson,et al. Molecular 2:1 digital multiplexer. , 2007, Angewandte Chemie.
[43] Giacomo Bergamini,et al. Old molecules, new concepts: [Ru(bpy)(3)](2+) as a molecular encoder-decoder. , 2009, Angewandte Chemie.
[44] Joakim Andréasson,et al. Photochromic supramolecular memory with nondestructive readout. , 2010, Angewandte Chemie.
[45] C. McCoy,et al. A molecular photoionic AND gate based on fluorescent signalling , 1993, Nature.
[46] Milko E van der Boom,et al. Redox-active monolayers as a versatile platform for integrating boolean logic gates. , 2008, Angewandte Chemie.