Mesh Independent Convergence Rates Via Differential Operator Pairs

In solving large linear systems arising from the discretization of elliptic problems by iteration, it is essential to use efficient preconditioners. The preconditioners should result in a mesh independent linear or, possibly even superlinear, convergence rate. It is shown that a general way to construct such preconditioners is via equivalent pairs or compactequivalent pairs of elliptic operators.

[1]  Tamás Kurics,et al.  Superlinearly convergent PCG algorithms for some nonsymmetric elliptic systems , 2008 .

[2]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[3]  Owe Axelsson,et al.  Equivalent operator preconditioning for linear elliptic problems , 2008 .

[4]  Owe Axelsson,et al.  Symmetric Part Preconditioning of the CG Method for Stokes Type Saddle-Point Systems , 2007 .

[5]  O. Axelsson Iterative solution methods , 1995 .

[6]  O. Axelsson A generalized conjugate gradient, least square method , 1987 .

[7]  Thomas A. Manteuffel,et al.  On the theory of equivalent operators and application to the numerical solution of uniformly elliptic partial differential equations , 1990 .

[8]  Owe Axelsson,et al.  Superlinearly convergent CG methods via equivalent preconditioning for nonsymmetric elliptic operators , 2004, Numerische Mathematik.

[9]  Owe Axelsson,et al.  Mesh Independent Superlinear PCG Rates Via Compact-Equivalent Operators , 2007, SIAM J. Numer. Anal..

[10]  Zahari Zlatev,et al.  Computer Treatment of Large Air Pollution Models , 1995 .

[11]  S. Eisenstat,et al.  Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .

[12]  Owe Axelsson,et al.  Conditioning analysis of separate displacement preconditioners for some nonlinear elasticity systems , 2004, Math. Comput. Simul..

[13]  T. Manteuffel,et al.  A taxonomy for conjugate gradient methods , 1990 .

[14]  Owe Axelsson,et al.  On iterative solvers in structural mechanics; separate displacement orderings and mixed variable methods , 1999 .

[15]  Ye.G. D'yakonov The construction of iterative methods based on the use of spectrally equivalent operators , 1966 .