Task offloading in edge computing for machine learning-based smart healthcare

[1]  Zubair A. Baig,et al.  Machine learning and data analytics for the IoT , 2020, Neural Computing and Applications.

[2]  Syed Ali Hassan,et al.  Machine Learning in IoT Security: Current Solutions and Future Challenges , 2019, IEEE Communications Surveys & Tutorials.

[3]  Xavier Fernando,et al.  oHealth: Opportunistic Healthcare in Public Transit through Fog and Edge Computing , 2019, 2019 IEEE International Conference on Smart Cloud (SmartCloud).

[4]  Nei Kato,et al.  Optimal Edge Resource Allocation in IoT-Based Smart Cities , 2019, IEEE Network.

[5]  Jirapond Muangprathub,et al.  IoT and agriculture data analysis for smart farm , 2019, Comput. Electron. Agric..

[6]  Sherali Zeadally,et al.  Offloading in fog computing for IoT: Review, enabling technologies, and research opportunities , 2018, Future Gener. Comput. Syst..

[7]  Sherali Zeadally,et al.  Privacy Issues and Solutions for Consumer Wearables , 2018, IT Professional.

[8]  Ning Zhang,et al.  A Survey on Service Migration in Mobile Edge Computing , 2018, IEEE Access.

[9]  Ragib Hasan,et al.  Aura: An incentive-driven ad-hoc IoT cloud framework for proximal mobile computation offloading , 2017, Future Gener. Comput. Syst..

[10]  Matthew D. Byrne Machine Learning in Health Care. , 2017, Journal of perianesthesia nursing : official journal of the American Society of PeriAnesthesia Nurses.

[11]  Xavier Fernando,et al.  Fog Assisted Driver Behavior Monitoring for Intelligent Transportation System , 2017, 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall).

[12]  Max Mühlhäuser,et al.  Decision Support for Computational Offloading by Probing Unknown Services , 2017, 2017 26th International Conference on Computer Communication and Networks (ICCCN).

[13]  Min Chen,et al.  Disease Prediction by Machine Learning Over Big Data From Healthcare Communities , 2017, IEEE Access.

[14]  Giancarlo Fortino,et al.  Enabling IoT interoperability through opportunistic smartphone-based mobile gateways , 2017, J. Netw. Comput. Appl..

[15]  Jakob Hoydis,et al.  An Introduction to Deep Learning for the Physical Layer , 2017, IEEE Transactions on Cognitive Communications and Networking.

[16]  Xu Chen,et al.  D2D Fogging: An Energy-Efficient and Incentive-Aware Task Offloading Framework via Network-assisted D2D Collaboration , 2016, IEEE Journal on Selected Areas in Communications.

[17]  Justine Rochas,et al.  K Nearest Neighbour Joins for Big Data on MapReduce: A Theoretical and Experimental Analysis , 2016, IEEE Transactions on Knowledge and Data Engineering.

[18]  Min Sheng,et al.  Mobile-Edge Computing: Partial Computation Offloading Using Dynamic Voltage Scaling , 2016, IEEE Transactions on Communications.

[19]  Xiaohui Zhao,et al.  An Energy Consumption Oriented Offloading Algorithm for Fog Computing , 2016, QSHINE.

[20]  Debashis De,et al.  Low power offloading strategy for femto-cloud mobile network , 2016 .

[21]  Simona Halunga,et al.  Implementation of Fog computing for reliable E-health applications , 2015, 2015 49th Asilomar Conference on Signals, Systems and Computers.

[22]  Gernot Heiser,et al.  The systems hacker's guide to the galaxy energy usage in a modern smartphone , 2013, APSys.

[23]  Araceli Sanchis,et al.  Online activity recognition using evolving classifiers , 2013, Expert Syst. Appl..

[24]  Miguel A. Labrador,et al.  A Survey on Human Activity Recognition using Wearable Sensors , 2013, IEEE Communications Surveys & Tutorials.

[25]  Dongbin Zhao,et al.  Computational Intelligence in Urban Traffic Signal Control: A Survey , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[26]  Sherali Zeadally,et al.  Energy-efficient networking: past, present, and future , 2012, The Journal of Supercomputing.