Polyethylene Hydrogenolysis at Mild Conditions over Ruthenium on Tungstated Zirconia

Plastics waste has become a major environmental threat, with polyethylene being one of the most produced and hardest to recycle plastics. Hydrogenolysis is potentially the most viable catalytic technology for recycling. Ruthenium (Ru) is one of the most active hydrogenolysis catalysts but yields too much methane. Here we introduce ruthenium supported on tungstated zirconia (Ru-WZr) for hydrogenolysis of low-density polyethylene (LDPE). We show that the Ru-WZr catalysts suppress methane formation and produce a product distribution in the diesel and wax/lubricant base-oil range unattainable by Ru-Zr and other Ru-supported catalysts. Importantly, the enhanced performance is showcased for real-world, single-use LDPE consumables. Reactivity studies combined with characterization and density functional theory calculations reveal that highly dispersed (WOx)n clusters store H as surface hydroxyls by spillover. We correlate this hydrogen storage mechanism with hydrogenation and desorption of long alkyl intermediates that would otherwise undergo further C–C scission to produce methane.

[1]  Thomas H. Epps,et al.  Single Pot Catalyst Strategy to Branched Products via Adhesive Isomerization and Hydrocracking of Polyethylene over Platinum Tungstated Zirconia , 2021, Applied Catalysis B: Environmental.

[2]  Hongfei Lin,et al.  Deconstruction of high-density polyethylene into liquid hydrocarbon fuels and lubricants by hydrogenolysis over Ru catalyst , 2021, Chem Catalysis.

[3]  K. Tomishige,et al.  Low-temperature catalytic upgrading of waste polyolefinic plastics into liquid fuels and waxes , 2021 .

[4]  D. Vlachos,et al.  Plastic waste to fuels by hydrocracking at mild conditions , 2021, Science Advances.

[5]  Aleksander A. Tedstone,et al.  Hydrocracking of virgin and post-consumer polymers , 2021 .

[6]  Yuriy Román‐Leshkov,et al.  Tandem Heterogeneous Catalysis for Polyethylene Depolymerization via an Olefin-Intermediate Process , 2021, ACS sustainable chemistry & engineering.

[7]  G. Huber,et al.  Catalytic Hydrogenolysis of Polyolefins into Alkanes , 2020, ACS Central Science.

[8]  I. Melián-Cabrera,et al.  Pd-modified beta zeolite for modulated hydro-cracking of low-density polyethylene into a paraffinic-rich hydrocarbon fuel , 2020 .

[9]  Y. Kubota,et al.  Synthesis of Mo and Ru solid-solution alloy NPs and their hydrogen evolution reaction activity. , 2020, Chemical communications.

[10]  Anne M. LaPointe,et al.  Polyethylene upcycling to long-chain alkylaromatics by tandem hydrogenolysis/aromatization , 2020, Science.

[11]  Ryan A. Hackler,et al.  Catalytic upcycling of high-density polyethylene via a processive mechanism , 2020, Nature Catalysis.

[12]  C. Corminboeuf,et al.  Catalytic Hydrocracking of Synthetic Polymers into Grid-Compatible Gas Streams , 2020, Cell Reports Physical Science.

[13]  Yuriy Román‐Leshkov,et al.  Conversion of Polyolefin Waste to Liquid Alkanes with Ru-Based Catalysts under Mild Conditions , 2020, JACS Au.

[14]  I. Hermans,et al.  The Use of Heterogeneous Catalysis in the Chemical Valorization of Plastic Waste. , 2020, ChemSusChem.

[15]  M. Usman,et al.  Composite zeolite beta catalysts for catalytic hydrocracking of plastic waste to liquid fuels , 2020, Materials for Renewable and Sustainable Energy.

[16]  G. Huber,et al.  The Chemistry and Kinetics of Polyethylene Pyrolysis: A Feedstock to Produce Fuels and Chemicals. , 2020, ChemSusChem.

[17]  Aleksander A. Tedstone,et al.  Catalyzing the Hydrocracking of Low Density Polyethylene , 2019, Industrial & Engineering Chemistry Research.

[18]  Andreas Heyden,et al.  Upcycling Single-Use Polyethylene into High-Quality Liquid Products , 2019, ACS central science.

[19]  R. Gorte,et al.  H-D Exchange of Simple Aromatics as a Measure of Brønsted-Acid Site Strengths in Solids , 2018, Catalysis Letters.

[20]  C. Bastiaansen,et al.  Drawing behavior and mechanical properties of ultra-high molecular weight polyethylene blends with a linear polyethylene wax , 2018, Polymer.

[21]  Jennifer D Lee,et al.  A Characterization Study of Reactive Sites in ALD-Synthesized WOx/ZrO2 Catalysts , 2018, Catalysts.

[22]  D. Vlachos,et al.  Mechanistic Study of the Direct Hydrodeoxygenation of m-Cresol over WOx-Decorated Pt/C Catalysts , 2018, ACS Catalysis.

[23]  Wan-fen Pu,et al.  Oxidation Behavior and Kinetics of Eight C20–C54 n-Alkanes by High Pressure Differential Scanning Calorimetry (HP-DSC) , 2018, Energy & Fuels.

[24]  T. Onn,et al.  A Study of Tetrahydrofurfuryl Alcohol to 1,5-Pentanediol Over Pt–WOx/C , 2018, Catalysis Letters.

[25]  M. Hakkarainen,et al.  Trash to Treasure : Microwave-Assisted Conversion of Polyethylene to Functional Chemicals , 2017 .

[26]  P. Stair,et al.  Multiwavelength Raman Spectroscopic Characterization of Alumina-Supported Molybdenum Oxide Prepared by Vapor Deposition , 2017, Topics in Catalysis.

[27]  K. Butler,et al.  Heterogeneous catalytic hydrogenation of CO2 by metal oxides: defect engineering - perfecting imperfection. , 2017, Chemical Society reviews.

[28]  R. Geyer,et al.  Production, use, and fate of all plastics ever made , 2017, Science Advances.

[29]  Tao Zhang,et al.  Selective Hydrogenolysis of Glycerol to 1,3-Propanediol: Manipulating the Frustrated Lewis Pairs by Introducing Gold to Pt/WOx. , 2017, ChemSusChem.

[30]  M. Neurock,et al.  Nature of Catalytically Active Sites in the Supported WO3/ZrO2 Solid Acid System: A Current Perspective , 2017 .

[31]  K. Tomishige,et al.  Regioselectivity and Reaction Mechanism of Ru-Catalyzed Hydrogenolysis of Squalane and Model Alkanes. , 2017, ChemSusChem.

[32]  D. Morgan Resolving ruthenium: XPS studies of common ruthenium materials , 2015 .

[33]  Oswer,et al.  Advancing Sustainable Materials Management: Facts and Figures Report , 2015 .

[34]  K. Tomishige,et al.  Catalytic production of branched small alkanes from biohydrocarbons. , 2015, ChemSusChem.

[35]  E. Iglesia,et al.  Metal-catalyzed C-C bond cleavage in alkanes: effects of methyl substitution on transition-state structures and stability. , 2014, Journal of the American Chemical Society.

[36]  D. Yan,et al.  The relationship between the degree of branching and glass transition temperature of branched polyethylene: experiment and simulation , 2014 .

[37]  C. Y. Chen,et al.  Molecular Redistribution and Molecular Averaging: Disproportionation of Paraffins via Bifunctional Catalysis , 2012, Topics in Catalysis.

[38]  D. Serrano,et al.  Developing Advanced Catalysts for the Conversion of Polyolefinic Waste Plastics into Fuels and Chemicals , 2012 .

[39]  R. Prins Hydrogen spillover. Facts and fiction. , 2012, Chemical reviews.

[40]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[41]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[42]  M. Wong,et al.  Identification of active Zr-WO(x) clusters on a ZrO2 support for solid acid catalysts. , 2009, Nature chemistry.

[43]  M. Wong,et al.  New insights into the nature of the acidic catalytic active sites present in ZrO2-supported tungsten oxide catalysts , 2008 .

[44]  S. Balaji,et al.  Low temperature synthesis of nanocrystalline WO3 films by sol–gel process , 2008 .

[45]  I. Wachs,et al.  Structural determination of bulk and surface tungsten oxides with UV-vis diffuse reflectance spectroscopy and raman spectroscopy , 2007 .

[46]  Amy H. Roy,et al.  Catalytic Alkane Metathesis by Tandem Alkane Dehydrogenation-Olefin Metathesis , 2006, Science.

[47]  M Newville,et al.  ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. , 2005, Journal of synchrotron radiation.

[48]  Yu‐Wen Chen,et al.  The kinetics of H2 adsorption on supported ruthenium catalysts , 2004 .

[49]  Robert L. White,et al.  Polyethylene catalytic hydrocracking by PtHZSM-5, PtHY, and PtHMCM-41 , 2004 .

[50]  Y. Solonin,et al.  Nonstoichiometric Tungsten Oxide Based on Hexagonal WO3 , 2001 .

[51]  A. Bell,et al.  Role of Hydrogen Spillover in Methanol Synthesis over Cu/ZrO2 , 2000 .

[52]  K. Domen,et al.  Hydrogen Adsorption on Ru/ZrO 2 Studied by FT-IR , 1999 .

[53]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[54]  Paul N. Sharratt,et al.  Investigation of the Catalytic Pyrolysis of High-Density Polyethylene over a HZSM-5 Catalyst in a Laboratory Fluidized-Bed Reactor , 1997 .

[55]  David P. Serrano,et al.  Catalytic Conversion of Polyolefins into Liquid Fuels over MCM-41: Comparison with ZSM-5 and Amorphous SiO2−Al2O3 , 1997 .

[56]  K. Knight,et al.  Crystal structure and paramagnetic behaviour of , 1997 .

[57]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[58]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[59]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[60]  G. Held,et al.  The structure of the p(√3 × √3)R30° bilayer of D2O on Ru(001) , 1994 .

[61]  S. Galvagno,et al.  Catalytic and structural properties of ruthenium bimetallic catalysts: Preparation and characterization , 1994 .

[62]  E. Iglesia,et al.  Fischer-Tropsch synthesis on cobalt and ruthenium. Metal dispersion and support effects on reaction rate and selectivity , 1992 .

[63]  J. Sinfelt Catalytic hydrogenolysis on metals , 1991 .

[64]  B. Desbat,et al.  Infrared and Raman spectroscopies of rf sputtered tungsten oxide films , 1988 .

[65]  Bernard Desbat,et al.  Infrared and Raman study of WO3 tungsten trioxides and WO3, xH2O tungsten trioxide tydrates , 1987 .

[66]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[67]  J. L. Carter,et al.  Hydrogenolysis of n-heptane over unsupported metals , 1971 .

[68]  V. I. Spitzin,et al.  Anwendung von kinetischen Methoden für die Untersuchung der Struktur und der Reaktionen der Bildung von hochmolekularen Aquowolframaten , 1963 .

[69]  R. Adzic,et al.  Nanoparticle size evaluation of catalysts by EXAFS: Advantages and limitations , 2016 .

[70]  G. San Miguel,et al.  Catalytic activity of zeolitic and mesostructured catalysts in the cracking of pure and waste polyolefins , 2007 .

[71]  David G. Barton,et al.  Selective isomerization of alkanes on supported tungsten oxide acids , 1996 .

[72]  Yoshiko Urabe,et al.  The Determination of The Homologous Purity of Higher Normal Alkanes up to Dohectane with Capillary Gas Chromatography , 1994 .

[73]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[74]  P. Weisz Polyfunctional Heterogeneous Catalysis , 1962 .