A comparison of the discrete cosine and wavelet transforms for hydrologic model input data reduction

Abstract. The treatment of input data uncertainty in hydrologic models is of crucial importance in the analysis, diagnosis and detection of model structural errors. Data reduction techniques decrease the dimensionality of input data, thus allowing modern parameter estimation algorithms to more efficiently estimate errors associated with input uncertainty and model structure. The discrete cosine transform (DCT) and discrete wavelet transform (DWT) are used to reduce the dimensionality of observed rainfall time series for the 438 catchments in the Model Parameter Estimation Experiment (MOPEX) data set. The rainfall time signals are then reconstructed and compared to the observed hyetographs using standard simulation performance summary metrics and descriptive statistics. The results convincingly demonstrate that the DWT is superior to the DCT in preserving and characterizing the observed rainfall data records. It is recommended that the DWT be used for model input data reduction in hydrology in preference over the DCT.

[1]  Jasper A. Vrugt,et al.  High‐dimensional posterior exploration of hydrologic models using multiple‐try DREAM(ZS) and high‐performance computing , 2012 .

[2]  James C. Bennett,et al.  Improving Precipitation Forecasts by Generating Ensembles through Postprocessing , 2015 .

[3]  J. Vrugt,et al.  Approximate Bayesian Computation using Markov Chain Monte Carlo simulation: DREAM(ABC) , 2014 .

[4]  Jasper A. Vrugt,et al.  UvA-DARE ( Digital Academic Repository ) DREAM ( D ) : An adaptive Markov chain Monte Carlo simulation algorithm to solve discrete , noncontinuous , and combinatorial posterior parameter estimation problems , 2011 .

[5]  Jan Adamowski,et al.  Using discrete wavelet transforms to analyze trends in streamflow and precipitation in Quebec and Ontario (1954–2008) , 2012 .

[6]  E. Foufoula‐Georgiou,et al.  Wavelet analysis for geophysical applications , 1997 .

[7]  George Kuczera,et al.  Critical evaluation of parameter consistency and predictive uncertainty in hydrological modeling: A case study using Bayesian total error analysis , 2009 .

[8]  K. Beven,et al.  A limits of acceptability approach to model evaluation and uncertainty estimation in flood frequency estimation by continuous simulation: Skalka catchment, Czech Republic , 2009 .

[9]  Mekonnen Gebremichael,et al.  Rainfall: State of the Science , 2010 .

[10]  George Kuczera,et al.  Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory , 2006 .

[11]  C. Diks,et al.  Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation , 2005 .

[12]  Dmitri Kavetski,et al.  Rainfall uncertainty in hydrological modelling: An evaluation of multiplicative error models , 2011 .

[13]  Valentijn R. N. Pauwels,et al.  Assessment of the indirect calibration of a rainfall-runoff model for ungauged catchments in Flanders , 2013 .

[14]  Cajo J. F. ter Braak,et al.  Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation , 2008 .

[15]  Ingrid Daubechies,et al.  The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.

[16]  Patrick M. Reed,et al.  How effective and efficient are multiobjective evolutionary algorithms at hydrologic model calibration , 2005 .

[17]  Bruce A. Robinson,et al.  Treatment of uncertainty using ensemble methods: Comparison of sequential data assimilation and Bayesian model averaging , 2007 .

[18]  Bellie Sivakumar,et al.  Rainfall dynamics at different temporal scales: A chaotic perspective , 2001 .

[19]  George Kuczera,et al.  Toward a reliable decomposition of predictive uncertainty in hydrological modeling: Characterizing rainfall errors using conditional simulation , 2011 .

[20]  Cajo J. F. ter Braak,et al.  Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling? , 2009 .

[21]  Keith Beven,et al.  A manifesto for the equifinality thesis , 2006 .

[22]  T. Gan,et al.  Automatic Calibration of Conceptual Rainfall-Runoff Models: Optimization Algorithms, Catchment Conditions, and Model Structure , 1996 .

[23]  Jeffrey G. Arnold,et al.  Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations , 2007 .

[24]  H. Gupta,et al.  Correcting the mathematical structure of a hydrological model via Bayesian data assimilation , 2011 .

[25]  Qingyun Duan,et al.  An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction , 2006 .

[26]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Florian Pappenberger,et al.  Ensemble flood forecasting: a review. , 2009 .

[28]  Henrik Madsen,et al.  An evaluation of the impact of model structure on hydrological modelling uncertainty for streamflow simulation , 2004 .

[29]  Gabrielle De Lannoy,et al.  Multivariate calibration of a water and energy balance model in the spectral domain , 2011 .

[30]  Quan J. Wang,et al.  Post-processing rainfall forecasts from numerical weather prediction models for short-term streamflow forecasting , 2013 .

[31]  D. Kavetski,et al.  Towards a Bayesian total error analysis of conceptual rainfall-runoff models: Characterising model error using storm-dependent parameters , 2006 .

[32]  M. Trosset,et al.  Bayesian recursive parameter estimation for hydrologic models , 2001 .

[33]  Soroosh Sorooshian,et al.  Optimal use of the SCE-UA global optimization method for calibrating watershed models , 1994 .

[34]  George Kuczera,et al.  Probabilistic optimization for conceptual rainfall-runoff models: A comparison of the shuffled complex evolution and simulated annealing algorithms , 1999 .

[35]  George Kuczera,et al.  Bayesian analysis of input uncertainty in hydrological modeling: 2. Application , 2006 .

[36]  Peter C. Young,et al.  Hypothetico‐inductive data‐based mechanistic modeling of hydrological systems , 2013 .

[37]  E. Zehe,et al.  Hydrological model performance and parameter estimation in the wavelet-domain , 2009 .

[38]  David Labat,et al.  Recent advances in wavelet analyses: Part 1. A review of concepts , 2005 .

[39]  D. Higdon,et al.  Accelerating Markov Chain Monte Carlo Simulation by Differential Evolution with Self-Adaptive Randomized Subspace Sampling , 2009 .

[40]  N. Ahmed,et al.  Discrete Cosine Transform , 1996 .