Large-scale sequence analyses of Atlantic cod.

[1]  Xiaowei Wang,et al.  Computational prediction of microRNA targets. , 2010, Methods in molecular biology.

[2]  Hanlee P. Ji,et al.  Next-generation DNA sequencing , 2008, Nature Biotechnology.

[3]  S. Carr,et al.  Intraspecific Phylogeographic Genomics From Multiple Complete mtDNA Genomes in Atlantic Cod (Gadus morhua): Origins of the “Codmother,” Transatlantic Vicariance and Midglacial Population Expansion , 2008, Genetics.

[4]  Gabor T. Marth,et al.  EagleView: a genome assembly viewer for next-generation sequencing technologies. , 2008, Genome research.

[5]  Keith A. Boroevich,et al.  Assessing the feasibility of GS FLX Pyrosequencing for sequencing the Atlantic salmon genome , 2008, BMC Genomics.

[6]  Oliver Hobert,et al.  Molecular architecture of a miRNA-regulated 3' UTR. , 2008, RNA.

[7]  G. Begemann MicroRNAs and RNA interference in zebrafish development. , 2008, Zebrafish.

[8]  S. Johansen,et al.  Complete mitochondrial genome sequences of the Arctic Ocean codfishes Arctogadus glacialis and Boreogadus saida reveal oriL and tRNA gene duplications , 2008, Polar Biology.

[9]  J. Yao,et al.  Cloning and characterization of microRNAs from rainbow trout (Oncorhynchus mykiss): Their expression during early embryonic development , 2008, BMC Developmental Biology.

[10]  K. Jørstad,et al.  Mixed stock analysis and the power of different classes of molecular markers in discriminating coastal and oceanic Atlantic cod (Gadus morhua L.) on the Lofoten spawning grounds, Northern Norway , 2008, Hydrobiologia.

[11]  V. P. Ponomarenko,et al.  The isolation of Atlantic cod, Gadus morhua (Gadiformes), populations in Northern Meromictic lakes—A recurrent arctic phenomenon , 2008, Journal of Ichthyology.

[12]  E. Mardis The impact of next-generation sequencing technology on genetics. , 2008, Trends in genetics : TIG.

[13]  Philip C. J. Donoghue,et al.  MicroRNAs and the advent of vertebrate morphological complexity , 2008, Proceedings of the National Academy of Sciences.

[14]  W. Filipowicz,et al.  Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? , 2008, Nature Reviews Genetics.

[15]  Stijn van Dongen,et al.  miRBase: tools for microRNA genomics , 2007, Nucleic Acids Res..

[16]  Martin J. Simard,et al.  Argonaute proteins: key players in RNA silencing , 2008, Nature Reviews Molecular Cell Biology.

[17]  Ima Paydar,et al.  Genomic Organization of Zebrafish microRNAs , 2008, BMC Genomics.

[18]  B. Hayes,et al.  Identification and characterisation of novel SNP markers in Atlantic cod: Evidence for directional selection , 2008, BMC Genetics.

[19]  E. Sarropoulou,et al.  Linking the Genomes of Nonmodel Teleosts Through Comparative Genomics , 2008, Marine Biotechnology.

[20]  Geir Ottersen,et al.  Ice-age survival of Atlantic cod: agreement between palaeoecology models and genetics , 2008, Proceedings of the Royal Society B: Biological Sciences.

[21]  Robin B Gasser,et al.  Using 454 technology for long-PCR based sequencing of the complete mitochondrial genome from single Haemonchus contortus (Nematoda) , 2008, BMC Genomics.

[22]  S. Johansen,et al.  Halibut mitochondrial genomes contain extensive heteroplasmic tandem repeat arrays involved in DNA recombination , 2008, BMC Genomics.

[23]  Zhanjiang Liu,et al.  Microarray Fundamentals: Basic Principles and Application in Aquaculture , 2007 .

[24]  J. Hemmer-Hansen,et al.  Adaptive differences in gene expression in European flounder (Platichthys flesus) , 2007, Molecular ecology.

[25]  A. Schier,et al.  Target Protectors Reveal Dampening and Balancing of Nodal Agonist and Antagonist by miR-430 , 2007, Science.

[26]  J. Westgaard,et al.  Atlantic cod (Gadus morhua L.) in inner and outer coastal zones of northern Norway display divergent genetic signature at non-neutral loci , 2007 .

[27]  D. Wallace Why do we still have a maternally inherited mitochondrial DNA? Insights from evolutionary medicine. , 2007, Annual review of biochemistry.

[28]  Ola Snøve,et al.  Epigenetics and MicroRNAs , 2007, Pediatric Research.

[29]  Ola Snøve,et al.  Distance constraints between microRNA target sites dictate efficacy and cooperativity , 2007, Nucleic acids research.

[30]  T. Ryan Gregory,et al.  Eukaryotic genome size databases , 2006, Nucleic Acids Res..

[31]  P. Sanseau,et al.  MicroRNAs : biology, function, and expression , 2007 .

[32]  M. Droege,et al.  Toward a new era in sequencing. , 2007, Biotechnology annual review.

[33]  S. Johansen,et al.  A mitogenomic approach to the taxonomy of pollocks: Theragra chalcogramma and T. finnmarchica represent one single species , 2007, BMC Evolutionary Biology.

[34]  J. Stenvik,et al.  Development of 25 gene-associated microsatellite markers of Atlantic cod ( Gadus morhua L.) , 2006 .

[35]  L. Bernatchez,et al.  The transcriptomics of ecological convergence between 2 limnetic coregonine fishes (Salmonidae). , 2006, Molecular biology and evolution.

[36]  Alexander F. Schier,et al.  Differential Regulation of Germline mRNAs in Soma and Germ Cells by Zebrafish miR-430 , 2006, Current Biology.

[37]  J. Stenvik,et al.  Eight new microsatellite markers in Atlantic cod (Gadus morhua L.) derived from an enriched genomic library , 2006 .

[38]  E. Nielsen,et al.  Evidence of microsatellite hitch‐hiking selection in Atlantic cod (Gadus morhua L.): implications for inferring population structure in nonmodel organisms , 2006, Molecular ecology.

[39]  O. Drivenes,et al.  RNAi and microRNAs: from animal models to disease therapy. , 2006, Birth defects research. Part C, Embryo today : reviews.

[40]  Anton J. Enright,et al.  Zebrafish MiR-430 Promotes Deadenylation and Clearance of Maternal mRNAs , 2006, Science.

[41]  E. Nielsen,et al.  Long‐term stability and effective population size in North Sea and Baltic Sea cod (Gadus morhua) , 2005, Molecular ecology.

[42]  R. A. Butow,et al.  The organization and inheritance of the mitochondrial genome , 2005, Nature Reviews Genetics.

[43]  R. Plasterk,et al.  MicroRNA function in animal development , 2005, FEBS letters.

[44]  James R. Knight,et al.  Genome sequencing in microfabricated high-density picolitre reactors , 2005, Nature.

[45]  R. Stoughton Applications of DNA microarrays in biology. , 2005, Annual review of biochemistry.

[46]  Chris Sander,et al.  The developmental miRNA profiles of zebrafish as determined by small RNA cloning. , 2005, Genes & development.

[47]  Anton J. Enright,et al.  Materials and Methods Figs. S1 to S4 Tables S1 to S5 References and Notes Micrornas Regulate Brain Morphogenesis in Zebrafish , 2022 .

[48]  J. Inoue,et al.  Molecular phylogeny and evolution of the freshwater eels genus Anguilla based on the whole mitochondrial genome sequences. , 2005, Molecular phylogenetics and evolution.

[49]  Lin He,et al.  MicroRNAs: small RNAs with a big role in gene regulation , 2004, Nature Reviews Genetics.

[50]  E. Árnason Mitochondrial cytochrome B DNA variation in the high-fecundity atlantic cod: trans-atlantic clines and shallow gene genealogy. , 2004, Genetics.

[51]  K. Mesa,et al.  Positive Darwinian selection at the pantophysin (Pan I) locus in marine gadid fishes. , 2004, Molecular biology and evolution.

[52]  E. Nielsen,et al.  Evidence of a hybrid‐zone in Atlantic cod (Gadus morhua) in the Baltic and the Danish Belt Sea revealed by individual admixture analysis , 2003, Molecular ecology.

[53]  A. Mortensen,et al.  Simultaneous Analysis of Six Microsatellite Markers in Atlantic Cod (Gadus morhua): A Novel Multiplex Assay System for Use in Selective Breeding Studies , 2003, Marine Biotechnology.

[54]  G. Pogson,et al.  Natural selection and the genetic differentiation of coastal and Arctic populations of the Atlantic cod in northern Norway: a test involving nucleotide sequence variation at the pantophysin (PanI) locus , 2002, Molecular ecology.

[55]  S. Johansen,et al.  Characterization of mitochondrial ribosomal RNA genes in gadiformes: sequence variations, secondary structural features, and phylogenetic implications. , 2002, Molecular phylogenetics and evolution.

[56]  A. Vignal,et al.  A review on SNP and other types of molecular markers and their use in animal genetics , 2002, Genetics Selection Evolution.

[57]  Einar Eg Nielsen,et al.  Assigning individual fish to populations using microsatellite DNA markers , 2001 .

[58]  G. Pogson Nucleotide polymorphism and natural selection at the pantophysin (Pan I) locus in the Atlantic cod, Gadus morhua (L.). , 2001, Genetics.

[59]  T. Beacham,et al.  Development of tri‐ and tetranucleotide repeat microsatellite loci in Atlantic cod (Gadus morhua) , 2000, Molecular ecology.

[60]  S. Johansen,et al.  Sequence Characterization of a Unique Intergenic Spacer in Gadiformes Mitochondrial DNA , 1999, Marine Biotechnology.

[61]  S. Johansen,et al.  The complete mitochondrial DNA sequence of Atlantic cod (Gadus morhua): relevance to taxonomic studies among codfishes. , 1996, Molecular marine biology and biotechnology.

[62]  D. Rand,et al.  Heteroplasmy of short tandem repeats in mitochondrial DNA of Atlantic cod, Gadus morhua. , 1992, Genetics.

[63]  S. Johansen,et al.  Organization of the mitochondrial genome of Atlantic cod, Gadus morhua. , 1990, Nucleic acids research.