Seasonally shifting limitation of stream periphyton: response of algal populations and assemblage biomass and productivity to variation in light, nutrients, and herbivores

We determined whether there were seasonal changes in the relative importance of consumers and resources in controlling stream periphyton. Our analysis included effects on algal populations and assemblage biomass and pro- ductivity. We used factorial experiments in which we manipulated snail densities, irradiance, and streamwater nutrient concentrations during two seasons, fall and spring, and compared responses with previously published summer findings. Periphyton biomass and productivity were much greater when snails were removed and nutrients and light were ele- vated during all seasons, indicating that all three factors were limiting or nearly limiting throughout the year. However, the relative importance of factors shifted seasonally. Irradiance limited periphyton biomass in summer and fall but not spring. In contrast, nutrients were more limiting in seasons in which light levels were higher: nutrient addition gener- ally resulted in effects of greater magnitude in fall and spring than in summer. Snail growth was stimulated by en- hanced irradiance in summer (p = 0.06) and by nutrient addition in fall, indicating resource limitation of both periphyton and snails. However, top-down control of periphyton by snails was also important: snails maintained low biomass assemblages dominated by only a few grazer-resistant species (e.g, basal cells of Stigeoclonium tenue, Chamaesiphon investiens) during all seasons. Resume : Nous avons examine les variations saisonnieres de l'importance relative des consommateurs et des ressources limitant le periphyton des cours d'eau. Notre analyse a traite des effets sur les populations d'algues et la biomasse et la productivite des communautes. Nous avons utilise des plans d'experience factoriels avec lesquels nous avons modifie la densite des escargots, l'eclairement et les concentrations de matieres nutritives dans l'eau pendant deux saisons, l'automne et le printemps, et ensuite compare les reactions a des resultats deja publies obtenus en ete. La biomasse et la productivite du periphyton etaient de beaucoup superieures en l'absence d'escargots et en presence de beaucoup de matieres nutritives et de lumiere cela pendant toutes les saisons, ce qui montre que ces trois facteurs etaient des fac- teurs limitants ou presque limitants pendant toute l'annee. Par ailleurs, l'importance relative des facteurs se modifiait au cours des saisons. L'eclairement limitait la biomasse du periphyton en ete et en automne mais non au printemps. Au contraire, les matieres nutritives avaient un effet plus limitant au cours des saisons ou l'eclairement etait plus impor- tant : l'ajout de matieres nutritives donnait generalement lieu a des effets de plus grande ampleur a l'automne et au printemps, comparativement a l'ete. La croissance des escargots etait stimulee par un plus important eclairement en ete (p = 0.06) et par l'ajout de matieres nutritives en automne, ce qui montre une limitation des ressources du periphyton et des escargots. Par ailleurs, la reduction verticale du periphyton par les escargots etait aussi importante : les escargots maintenaient des communautes de faibles biomasses dominees par quelques especes resistantes au broutage (p. ex. cel- lules basales de Stigeoclonium tenue, Chamaesiphon investiens) pendant toutes les saisons. (Traduit par la Redaction) Rosemond et al. 75

[1]  Patrick J. Mulholland,et al.  Top‐Down and Bottom‐Up Control of Stream Periphyton: Effects of Nutrients and Herbivores , 1993 .

[2]  R. Steneck A Limpet‐Coralline Alga Association: Adaptations and Defenses Between a Selective Herbivore and its Prey , 1982 .

[3]  S. Fisher,et al.  Nitrogen Limitation in a Sonoran Desert Stream , 1986, Journal of the North American Benthological Society.

[4]  A. Rosemond,et al.  SPECIES‐SPECIFIC CHARACTERISTICS EXPLAIN THE PERSISTENCE OF STIGEOCLONIUM TENUE (CHLOROPHYTA) IN A WOODLAND STREAM 1 , 1996 .

[5]  Craig W. Osenberg,et al.  The Relative Importance of Resource Limitation and Predator Limitation in Food Chains , 1996 .

[6]  A. Steinman Does an increase in irradiance influence periphyton in a heavily-grazed woodland stream? , 1992, Oecologia.

[7]  D. Blinn,et al.  IMPORTANCE OF PHYSICAL VARIABLES ON THE SEASONAL DYNAMICS OF EPILITHIC ALGAE IN A HIGHLY SHADED CANYON STREAM 1 , 1989 .

[8]  S. Lewis The Role of Herbivorous Fishes in the Organization of a Caribbean Reef Community , 1986 .

[9]  H. L. Boston,et al.  Grazers and Nutrients Simultaneously Limit Lotic Primary Productivity , 1992 .

[10]  D. T. C. Friend A Simple Method of Measuring Integrated Light Values in the Field , 1961 .

[11]  M. Power Hydrologic and trophic controls of seasonal algal blooms in northern California rivers , 1992 .

[12]  M. Leibold,et al.  Interactions between food-web structure and nutrients on pond organisms , 1992, Nature.

[13]  H. Kuosa,et al.  Nutrient limitation and grazing control of the Baltic plankton community during annual succession , 1993 .

[14]  J. Lubchenco Plant Species Diversity in a Marine Intertidal Community: Importance of Herbivore Food Preference and Algal Competitive Abilities , 1978, The American Naturalist.

[15]  R. Lowe,et al.  Primary productivity and spatial structure of phytolithic growth in streams in the Great Smoky Mountains National Park, Tennessee , 1985, Hydrobiologia.

[16]  J. Wehr Analysis of seasonal succession of attached algae in a mountain stream, the North Alouette River, British columbial , 1981 .

[17]  Lars-Anders Hansson,et al.  The Role of Food Chain Composition and Nutrient Availability in Shaping Algal Biomass Development , 1992 .

[18]  J. Elwood,et al.  Extraction with DMSO to simultaneously measure periphyton photosynthesis, chlorophyll, and ATP1,2 , 1987 .

[19]  C. Hawkins,et al.  Interactions between Stream Herbivores and Periphyton: A Quantitative Analysis of past Experiments , 1995, Journal of the North American Benthological Society.

[20]  C. Pringle Effects of Water and Substratum Nutrient Supplies on Lotic Periphyton Growth: An Integrated Bioassay , 1987 .

[21]  Nancy Huntly,et al.  Herbivores and the dynamics of communities and ecosystems , 1991 .

[22]  A. Rosemond Interactions among irradiance, nutrients, and herbivores constrain a stream algal community , 1993, Oecologia.

[23]  Colin S. Reynolds,et al.  The ecology of freshwater phytoplankton , 1984 .

[24]  インターグループ SAS user's guide : basics , 1986 .

[25]  M. Hay The functional morphology of turf-forming seaweeds: persistence in stressful marine habitats , 1981 .

[26]  F. W. Gilcreas,et al.  Standard methods for the examination of water and waste water. , 1966, American journal of public health and the nation's health.

[27]  Michael T. Brett,et al.  Consumer Versus Resource Control in Freshwater Pelagic Food Webs , 1997, Science.

[28]  M. G. Ryon,et al.  Light limitation in a stream ecosystem: responses by primary producers and consumers , 1995 .

[29]  J. Hobbie,et al.  A continuous‐flow periphyton bioassay: Tests of nutrient limitation in a tundra stream1 , 1983 .

[30]  A. J. Stewart,et al.  Grazer Control of Algae in an Ozark Mountain Stream: Effects of Short-Term Exclusion , 1988 .

[31]  L. J. Paulson,et al.  Methods for biological, chemical, and physical analyses in reservoirs , 1980 .

[32]  Patrick J. Mulholland,et al.  Regulation of nutrient concentrations in a temperate forest stream: Roles of upland, riparian, and instream processes , 1992 .

[33]  M. Vanni,et al.  Seasonal patterns of grazing and nutrient limitation of phytoplankton in a eutrophic lake , 1990 .

[34]  Dale W. Johnson,et al.  Analysis of Biogeochemical Cycling Processes in Walker Branch Watershed , 1989, Springer Advanced Texts in Life Sciences.

[35]  Macroalgae of a stream in southeastern Brazil: composition, seasonal variation and relation to physical and chemical variables , 1991, Hydrobiologia.

[36]  R. O'Neill,et al.  Phosphorus Dynamics in a Woodland Stream Ecosystem: A Study of Nutrient Spiralling , 1983 .

[37]  John R. Post,et al.  Trophic Relationships in Freshwater Pelagic Ecosystems , 1986 .

[38]  A. M. Olson,et al.  COMPETITION IN SEAWEEDS: LINKING PLANT TRAITS TO COMPETITIVE OUTCOMES , 1990 .

[39]  A. Rosemond Multiple Factors Limit Seasonal Variation in Periphyton in a Forest Stream , 1994, Journal of the North American Benthological Society.

[40]  S. Fisher,et al.  Periphyton production in Fort River, Massachusetts , 1979 .