Total synthesis of neokotalanol, a potent α-glucosidase inhibitor isolated from Salacia reticulata.

[1]  Xiao-ming Wu,et al.  Research Progress of Synthesis and Structure-activity Relationship Studies on Sulfonium-type α-glucosidase Inhibitors Isolated from Salacia Genus Plants , 2013 .

[2]  I. Nakanishi,et al.  In silico design, synthesis and evaluation of 3'-O-benzylated analogs of salacinol, a potent α-glucosidase inhibitor isolated from an Ayurvedic traditional medicine "Salacia". , 2012, Chemical communications.

[3]  C. Spencer,et al.  Miglitol , 2000, Drugs.

[4]  M. Yoshikawa,et al.  Biological evaluation of 3'-O-alkylated analogs of salacinol, the role of hydrophobic alkyl group at 3' position in the side chain on the α-glucosidase inhibitory activity. , 2011, Bioorganic & medicinal chemistry letters.

[5]  Xiao-ming Wu,et al.  Isolation, structure identification and SAR studies on thiosugar sulfonium salts, neosalaprinol and neoponkoranol, as potent α-glucosidase inhibitors. , 2011, Bioorganic & medicinal chemistry.

[6]  T. Morikawa,et al.  Characteristic alkaline catalyzed degradation of kotalanol, a potent α-glucosidase inhibitor isolated from Ayurvedic traditional medicine Salacia reticulata, leading to anhydroheptitols: another structural proof. , 2010 .

[7]  M. Yoshikawa,et al.  Facile Synthesis of De-O-sulfated Salacinols: Revision of the Structure of Neosalacinol, a Potent α-Glucosidase Inhibitor. , 2009 .

[8]  B. M. Pinto,et al.  Structure proof and synthesis of kotalanol and de-O-sulfonated kotalanol, glycosidase inhibitors isolated from an herbal remedy for the treatment of type-2 diabetes. , 2009, Journal of the American Chemical Society.

[9]  M. Yoshikawa,et al.  On the structure of the bioactive constituent from ayurvedic medicine Salacia reticulata: revision of the literature , 2008 .

[10]  H. Matsuda,et al.  Salaprinol and Ponkoranol with Thiosugar Sulfonium Sulfate Structure from Salacia prinoides and α-Glucosidase Inhibitory Activity of Ponkoranol and Kotalanol Desulfate. , 2008 .

[11]  S. Ozaki,et al.  Hypoglycemic Effect of 13-Membered Ring Thiocyclitol, a Novel α-Glucosidase Inhibitor from Kothala-himbutu (Salacia reticulata) , 2008, Bioscience, biotechnology, and biochemistry.

[12]  S. Kitamura,et al.  Alpha-glucosidase inhibitor from Kothala-himbutu (Salacia reticulata WIGHT). , 2008, Journal of natural products.

[13]  H. Matsuda,et al.  Salaprionol and Ponkoranol with Thiosugar Sulfonium Sulfate Structure from Salacia prinoides and a-Glucosidase Inhibitory Activity of Ponkoranol and Kotalanol Desulfate , 2008 .

[14]  T. Okamoto,et al.  Effect of five-membered sugar mimics on mammalian glycogen-degrading enzymes and various glucosidases. , 2008, Bioorganic & medicinal chemistry.

[15]  R. Dwek,et al.  Imino sugar inhibitors for treating the lysosomal glycosphingolipidoses. , 2005, Glycobiology.

[16]  P. Stanley,et al.  Molecular analysis of three gain-of-function CHO mutants that add the bisecting GlcNAc to N-glycans. , 2004, Glycobiology.

[17]  R. Josse,et al.  Intestinal absorption inhibitors for type 2 diabetes mellitus: prevention and treatment , 2004 .

[18]  M. Yoshikawa Absolute stereostructure of potent α-glucosidase inhibitor, salacinol, with unique thiosugar sulfonium sulfate inner salt structure from Salacia reticulate , 2002 .

[19]  H. Matsuda,et al.  Absolute stereostructure of potent alpha-glucosidase inhibitor, Salacinol, with unique thiosugar sulfonium sulfate inner salt structure from Salacia reticulata. , 2002, Bioorganic & medicinal chemistry.

[20]  T. Ishizu,et al.  Indonesian medicinal plants. XXIV. Stereochemical structure of perseitol x K+ complex isolated from the leaves of Scurrula fusca (Loranthaceae). , 2002, Chemical & pharmaceutical bulletin.

[21]  Mikael Bols,et al.  Recent developments of transition-state analogue glycosidase inhibitors of non-natural product origin. , 2002, Chemical reviews.

[22]  R. Schmidt,et al.  Solid Phase Syntheses of Oligomannosides and of a Lactosamine Containing Milk Trisaccharide Using a Benzoate Linker , 2001 .

[23]  A. Reitz,et al.  Pharmacological Treatment of Obesity: Therapeutic Strategies , 1999 .

[24]  R. Schmidt,et al.  Glycosyl Phosphatidylinositol (GPI) Anchor Synthesis Based on Versatile Building Blocks – Total Synthesis of a GPI Anchor of Yeast , 1999 .

[25]  A. Vasella,et al.  Recent Insights into Inhibition, Structure, and Mechanism of Configuration-Retaining Glycosidases. , 1999, Angewandte Chemie.

[26]  H. Matsuda,et al.  Kotalanol, a Potent α‐Glucosidase Inhibitor with Thiosugar Sulfonium Sulfate Structure, from Antidiabetic Ayurvedic Medicine Salacia reticulata. , 1999 .

[27]  A. Reitz,et al.  Pharmacological treatment of obesity: therapeutic strategies. , 1999, Journal of medicinal chemistry.

[28]  A. Herscovics 3.02 – Glycosidases of the Asparagine-linked Oligosaccharide Processing Pathway , 1999 .

[29]  H. Matsuda,et al.  Salacinol, Potent Antidiabetic Principle with Unique Thiosugar Sulfonium Sulfate Structure from the Ayurvedic Traditional Medicine Salacia reticulata in Sri Lanka and India. , 1998 .

[30]  H. Matsuda,et al.  Salacinol, potent antidiabetic principle with unique thiosugar sulfonium sulfate structure from the Ayurvedic traditional medicine Salacia reticulata in Sri Lanka and India , 1997 .

[31]  X. Pi-Sunyer,et al.  Acarbose in the Treatment of Type I Diabetes , 1997, Diabetes Care.

[32]  A. Herscovics,et al.  Glycosidases of the asparagine-linked oligosaccharide processing pathway. , 1994, Glycobiology.

[33]  K. Matsui,et al.  Inhibitory effect of pseudo-aminosugars on oligosaccharide glucosidases I and II and on lysosomal alpha-glucosidase from rat liver. , 1990, Journal of Biochemistry (Tokyo).

[34]  A. Dharma Indonesian medicinal plants , 1987 .

[35]  D. Lewis 1 H nuclear magnetic resonance spectra and conformations of six heptitols in deuterium oxide , 1986 .

[36]  S. Angyal,et al.  The 13C-n.m.r. spectra and the conformations of heptitols in solution , 1984 .