Certified predictor-corrector tracking for Newton homotopies

We develop certified tracking procedures for Newton homotopies, which are homotopies for which only the constant terms are changed. For these homotopies, our certified procedures include using a constant predictor with Newton corrections, an Euler predictor with no corrections, and an Euler predictor with Newton corrections. In each case, the predictor is guaranteed to produce a point in the quadratic convergence basin of Newton's method. We analyze the complexity of a tracking procedure using a constant predictor with Newton corrections, with the number of steps bounded above by a constant multiple of the length of the path in the γ-metric. Examples are included to compare the behavior of these certified tracking methods.

[1]  Jonathan D. Hauenstein,et al.  Software for numerical algebraic geometry: a paradigm and progress towards its implementation , 2008 .

[2]  Anton Leykin,et al.  Certified Numerical Homotopy Tracking , 2009, Exp. Math..

[3]  Carlos Beltrán,et al.  On Smale's 17th Problem: A Probabilistic Positive Solution , 2008, Found. Comput. Math..

[4]  Jan Verschelde,et al.  Algorithm 795: PHCpack: a general-purpose solver for polynomial systems by homotopy continuation , 1999, TOMS.

[5]  Stephen Smale,et al.  Complexity of Bezout's Theorem V: Polynomial Time , 1994, Theor. Comput. Sci..

[6]  Anton Leykin Numerical Algebraic Geometry for Macaulay2 , 2009, ArXiv.

[7]  J. Hauenstein,et al.  Real solutions to systems of polynomial equations and parameter continuation , 2015 .

[8]  Jan Verschelde,et al.  Using Monodromy to Decompose Solution Sets of Polynomial Systems into Irreducible Components , 2001 .

[9]  Michael Shub,et al.  Complexity of Bezout’s Theorem VI: Geodesics in the Condition (Number) Metric , 2007, Found. Comput. Math..

[10]  Anton Leykin,et al.  Numerical algebraic geometry , 2020, Applications of Polynomial Systems.

[11]  Jonathan D. Hauenstein,et al.  Efficient path tracking methods , 2011, Numerical Algorithms.

[12]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[13]  K. Judd Numerical methods in economics , 1998 .

[14]  Richard E. Ewing,et al.  "The Merging of Disciplines: New Directions in Pure, Applied, and Computational Mathematics" , 1986 .

[15]  Tsung-Lin Lee,et al.  HOM4PS-2.0: a software package for solving polynomial systems by the polyhedral homotopy continuation method , 2008, Computing.

[16]  S. Smale Newton’s Method Estimates from Data at One Point , 1986 .

[17]  D. Mehta,et al.  Communication: Newton homotopies for sampling stationary points of potential energy landscapes. , 2014, The Journal of chemical physics.

[18]  Jonathan D. Hauenstein,et al.  An a posteriori certification algorithm for Newton homotopies , 2014, ISSAC.

[19]  S. Smale,et al.  Complexity of Bézout’s theorem. I. Geometric aspects , 1993 .

[20]  S. Smale The fundamental theorem of algebra and complexity theory , 1981 .

[21]  Stephen Smale,et al.  Complexity of Bezout's Theorem: III. Condition Number and Packing , 1993, J. Complex..

[22]  Frank Sottile,et al.  Galois groups of Schubert problems via homotopy computation , 2007, Math. Comput..

[23]  Anton Leykin,et al.  Robust Certified Numerical Homotopy Tracking , 2011, Foundations of Computational Mathematics.

[24]  Frank Sottile,et al.  ALGORITHM XXX: ALPHACERTIFIED: CERTIFYING SOLUTIONS TO POLYNOMIAL SYSTEMS , 2011 .