Integrative Analysis of Longitudinal Metabolomics Data from a Personal Multi-Omics Profile

The integrative personal omics profile (iPOP) is a pioneering study that combines genomics, transcriptomics, proteomics, metabolomics and autoantibody profiles from a single individual over a 14-month period. The observation period includes two episodes of viral infection: a human rhinovirus and a respiratory syncytial virus. The profile studies give an informative snapshot into the biological functioning of an organism. We hypothesize that pathway expression levels are associated with disease status. To test this hypothesis, we use biological pathways to integrate metabolomics and proteomics iPOP data. The approach computes the pathways’ differential expression levels at each time point, while taking into account the pathway structure and the longitudinal design. The resulting pathway levels show strong association with the disease status. Further, we identify temporal patterns in metabolite expression levels. The changes in metabolite expression levels also appear to be consistent with the disease status. The results of the integrative analysis suggest that changes in biological pathways may be used to predict and monitor the disease. The iPOP experimental design, data acquisition and analysis issues are discussed within the broader context of personal profiling.

[1]  Susumu Goto,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..

[2]  中尾 光輝,et al.  KEGG(Kyoto Encyclopedia of Genes and Genomes)〔和文〕 (特集 ゲノム医学の現在と未来--基礎と臨床) -- (データベース) , 2000 .

[3]  M. Boukhvalova,et al.  Respiratory Syncytial Virus Fusion Protein-Induced Toll-Like Receptor 4 (TLR4) Signaling Is Inhibited by the TLR4 Antagonists Rhodobacter sphaeroides Lipopolysaccharide and Eritoran (E5564) and Requires Direct Interaction with MD-2 , 2012, mBio.

[4]  J. van Helden,et al.  Interactive visualization and exploration of relationships between biological objects. , 2000, Trends in biotechnology.

[5]  Bing Zhang,et al.  Integrative Omics Analysis Reveals the Importance and Scope of Translational Repression in microRNA-mediated Regulation , 2013, Molecular & Cellular Proteomics.

[6]  Ralf Herwig,et al.  ConsensusPathDB: toward a more complete picture of cell biology , 2010, Nucleic Acids Res..

[7]  Cathy H. Wu,et al.  The Universal Protein Resource (UniProt) , 2006, Nucleic Acids Research.

[8]  M. Blumenberg SKINOMICS: Transcriptional Profiling in Dermatology and Skin Biology , 2012, Current genomics.

[9]  George I. Mias,et al.  Personal genomes, quantitative dynamic omics and personalized medicine , 2013, Quantitative Biology.

[10]  Joel G. Pounds,et al.  Sequential projection pursuit principal component analysis--dealing with missing data associated with new -omics technologies. , 2013, BioTechniques.

[11]  Eugene Kolker,et al.  DELSA Global for “Big Data” and the Bioeconomy: Catalyzing Collective Innovation , 2012 .

[12]  C. Contreras‐Ortega,et al.  Pharmacogenetics of osteoporosis: towards novel theranostics for personalized medicine? , 2012, Omics : a journal of integrative biology.

[13]  P. Rousseeuw,et al.  Wiley Series in Probability and Mathematical Statistics , 2005 .

[14]  G. Hunninghake,et al.  Activation of the Epidermal Growth Factor Receptor by Respiratory Syncytial Virus Results in Increased Inflammation and Delayed Apoptosis* , 2005, Journal of Biological Chemistry.

[15]  L. Anderson,et al.  Involvement of Toll-Like Receptor 4 in Innate Immunity to Respiratory Syncytial Virus , 2001, Journal of Virology.

[16]  A. Quittner,et al.  Utilization of patient-reported outcomes as a step towards collaborative medicine. , 2013, Paediatric respiratory reviews.

[17]  Vic Barnett,et al.  Interpreting multivariate data , 1982 .

[18]  D. Accili,et al.  Application of combined omics platforms to accelerate biomedical discovery in diabesity , 2013, Annals of the New York Academy of Sciences.

[19]  Yuanhua Liu,et al.  Multilevel omic data integration in cancer cell lines: advanced annotation and emergent properties , 2013, BMC Systems Biology.

[20]  L. Defrancesco Omics gets personal , 2012, Nature Biotechnology.

[21]  Lutgarde M. C. Buydens,et al.  Fusion of metabolomics and proteomics data for biomarkers discovery: case study on the experimental autoimmune encephalomyelitis , 2011, BMC Bioinformatics.

[22]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[23]  B. Al-Lazikani,et al.  Personalized Cancer Medicine: Molecular Diagnostics, Predictive biomarkers, and Drug Resistance , 2012, Clinical pharmacology and therapeutics.

[24]  Siva K. Panguluri,et al.  Genomic Profiling of Messenger RNAs and MicroRNAs Reveals Potential Mechanisms of TWEAK-Induced Skeletal Muscle Wasting in Mice , 2010, PloS one.

[25]  Eugene Kolker,et al.  Vaccines of the 21st century and vaccinomics: data-enabled science meets global health to spark collective action for vaccine innovation. , 2011, Omics : a journal of integrative biology.

[26]  Winston Haynes,et al.  Unraveling the Complexities of Life Sciences Data , 2013, Big Data.

[27]  Rui Chen,et al.  Promise of personalized omics to precision medicine , 2013, Wiley interdisciplinary reviews. Systems biology and medicine.

[28]  Winston Haynes,et al.  Differential Expression Analysis for Pathways , 2013, PLoS Comput. Biol..

[29]  J. Hartigan Consistency of Single Linkage for High-Density Clusters , 1981 .

[30]  P. Burgel,et al.  Roles of epidermal growth factor receptor activation in epithelial cell repair and mucin production in airway epithelium , 2004, Thorax.

[31]  A. D. Gordon,et al.  Interpreting multivariate data , 1982 .

[32]  Melanie Swan,et al.  The Quantified Self: Fundamental Disruption in Big Data Science and Biological Discovery , 2013, Big Data.

[33]  M. Snyder,et al.  iPOP goes the world: integrated personalized Omics profiling and the road toward improved health care. , 2013, Chemistry & biology.

[34]  Doron Lancet,et al.  MOPED: Model Organism Protein Expression Database , 2011, Nucleic Acids Res..

[35]  Nobuyuki Itoh,et al.  Fibroblast growth factors , 2001, Genome Biology.

[36]  Hugo Y. K. Lam,et al.  Personal Omics Profiling Reveals Dynamic Molecular and Medical Phenotypes , 2012, Cell.

[37]  B. Murphy,et al.  Effect of Coexpression of Interleukin-2 by Recombinant Respiratory Syncytial Virus on Virus Replication, Immunogenicity, and Production of Other Cytokines , 2000, Journal of Virology.

[38]  Mark R. Viant,et al.  Missing values in mass spectrometry based metabolomics: an undervalued step in the data processing pipeline , 2011, Metabolomics.

[39]  George A Calin,et al.  mRNA/microRNA gene expression profile in microsatellite unstable colorectal cancer , 2007, Molecular Cancer.

[40]  Winston Haynes,et al.  SPIRE: Systematic protein investigative research environment. , 2011, Journal of proteomics.

[41]  M. Agirbasli,et al.  Triple therapy (aspirin, clopidogrel and oral anticoagulant) after percutaneous coronary intervention: another call for personalized medicine. , 2013, Anadolu kardiyoloji dergisi : AKD = the Anatolian journal of cardiology.

[42]  L. Carin,et al.  Gene expression signatures diagnose influenza and other symptomatic respiratory viral infections in humans. , 2009, Cell host & microbe.

[43]  K. Robards,et al.  Metabolomics: The greatest omics of them all? , 2006, Analytical chemistry.

[44]  Lincoln Stein,et al.  Reactome knowledgebase of human biological pathways and processes , 2008, Nucleic Acids Res..

[45]  Francesco Pesce,et al.  From -omics to personalized medicine in nephrology: integration is the key. , 2013, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[46]  M. Buyse,et al.  Omics-based clinical trial designs , 2013, Current opinion in oncology.

[47]  Geoffrey C. Fox,et al.  Biomedical Case Studies in Data Intensive Computing , 2009, CloudCom.

[48]  Winston Haynes,et al.  Bioinformatics and data-intensive scientific discovery in the beginning of the 21st century. , 2011, Omics : a journal of integrative biology.

[49]  Wolfram Weckwerth,et al.  Metabolomics : methods and protocols , 2007 .

[50]  Garnet Navarro,et al.  miR-451 Regulates Dendritic Cell Cytokine Responses to Influenza Infection , 2012, The Journal of Immunology.

[51]  Rajesh Nandy,et al.  Cluster analysis of fMRI data using dendrogram sharpening , 2003, Human brain mapping.

[52]  J. Soria,et al.  [Discrepancies between primary tumor and metastasis: impact on personalized medicine]. , 2013, Bulletin du cancer.

[53]  David Haussler,et al.  Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM , 2010, Bioinform..

[54]  Christoph Steinbeck,et al.  The ChEBI reference database and ontology for biologically relevant chemistry: enhancements for 2013 , 2012, Nucleic Acids Res..

[55]  J. Hartigan Distribution Problems in Clustering , 1977 .

[56]  Michael G. Katze,et al.  Systems virology: host-directed approaches to viral pathogenesis and drug targeting , 2013, Nature Reviews Microbiology.

[57]  Eugene Kolker,et al.  Special issue on data-intensive science. , 2011, Omics : a journal of integrative biology.

[58]  Winston Haynes,et al.  Corrigendum to “SPIRE: Systematic Protein Investigative Research Environment” [J. Proteomics 75 (1) (2011) 122–126] , 2012 .

[59]  W. Stuetzle,et al.  On Potts Model Clustering, Kernel K-Means and Density Estimation , 2008 .

[60]  D. Sabatini,et al.  mTOR signaling at a glance , 2009, Journal of Cell Science.