Evaluating the Premises and Results of Four Metaphor Identification Systems

This study first examines the implicit and explicit premises of four systems for identifying metaphoric utterances from unannotated input text. All four systems are then evaluated on a common data set in order to see which premises are most successful. The goal is to see if these systems can find metaphors in a corpus that is mostly non-metaphoric without over-identifying literal and humorous utterances as metaphors. Three of the systems are distributional semantic systems, including a source-target mapping method [1-4]; a word abstractness measurement method [5], [6, 7]; and a semantic similarity measurement method [8, 9]. The fourth is a knowledge-based system which uses a domain interaction method based on the SUMO ontology [10, 11], implementing the hypothesis that metaphor is a product of the interactions among all of the concepts represented in an utterance [12, 13].

[1]  Anna Korhonen,et al.  Improving Verb Clustering with Automatically Acquired Selectional Preferences , 2009, EMNLP.

[2]  Ted Briscoe,et al.  The Second Release of the RASP System , 2006, ACL.

[3]  Adam Pease,et al.  Towards a standard upper ontology , 2001, FOIS.

[4]  Caroline Sporleder,et al.  Classifier Combination for Contextual Idiom Detection Without Labelled Data , 2009, EMNLP.

[5]  Alexander Gelbukh,et al.  Computational Linguistics and Intelligent Text Processing , 2015, Lecture Notes in Computer Science.

[6]  Jonathan Dunn,et al.  How linguistic structure influences and helps to predict metaphoric meaning , 2013 .

[7]  Fredric C. Gey,et al.  Proceedings of LREC , 2010 .

[8]  John A. Carroll,et al.  Applied morphological processing of English , 2001, Natural Language Engineering.

[9]  Sergei Nirenburg,et al.  Book Review: Ontological Semantics, by Sergei Nirenburg and Victor Raskin , 2004, CL.

[10]  Mirella Lapata,et al.  Proceedings of EMNLP 2004 , 2004 .

[11]  Caroline Sporleder,et al.  Using Gaussian Mixture Models to Detect Figurative Language in Context , 2010, NAACL.

[12]  R. GibbsJr. Literal meaning and psychological theory , 1984 .

[13]  Paul M. B. Vitányi,et al.  The Google Similarity Distance , 2004, IEEE Transactions on Knowledge and Data Engineering.

[14]  Simone Teufel,et al.  Statistical Metaphor Processing , 2013, CL.

[15]  Sergei Nirenburg,et al.  An Applied Ontological Semantic Microtheory of Adjective Meaning for Natural Language Processing , 1998, Machine Translation.

[16]  Michael L. Littman,et al.  Measuring praise and criticism: Inference of semantic orientation from association , 2003, TOIS.

[17]  G. Lakoff,et al.  Philosophy in the flesh : the embodied mind and its challenge to Western thought , 1999 .

[18]  Simone Teufel,et al.  Metaphor Corpus Annotated for Source - Target Domain Mappings , 2010, LREC.

[19]  Ekaterina Shutova,et al.  Models of Metaphor in NLP , 2010, ACL.

[20]  Alexandros Potamianos,et al.  SemSim: Resources for Normalized Semantic Similarity Computation Using Lexical Networks , 2012, LREC.

[21]  Jonathan Dunn Gradient Semantic Intuitions of Metaphoric Expressions , 2010 .

[22]  John A. Barnden,et al.  Metaphor and metonymy: Making their connections more slippery , 2010 .

[23]  Ian Witten,et al.  Data Mining , 2000 .

[24]  Yair Neuman,et al.  Literal and Metaphorical Sense Identification through Concrete and Abstract Context , 2011, EMNLP.

[25]  Yair Neuman,et al.  Metaphor-based meaning excavation , 2009, Inf. Sci..

[26]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques with Java implementations , 2002, SGMD.

[27]  Mark Davies The 385+ million word Corpus of Contemporary American English (1990―2008+): Design, architecture, and linguistic insights , 2009 .

[28]  Benny Shanon,et al.  Metaphor: From Fixedness and Selection to Differentiation and Creation , 1992 .

[29]  Adam Pease,et al.  Linking Lixicons and Ontologies: Mapping WordNet to the Suggested Upper Merged Ontology , 2003, IKE.

[30]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .

[31]  G. Lakoff,et al.  Metaphors We Live by , 1982 .

[32]  Yuval Krymolowski,et al.  Verb Class Discovery from Rich Syntactic Data , 2008, CICLing.

[33]  Anna Korhonen,et al.  Metaphor Identification Using Verb and Noun Clustering , 2010, COLING.

[34]  Nancy Ide,et al.  The American National Corpus First Release , 2004, LREC.