Effective variant filtering and expected candidate variant yield in studies of rare human disease

[1]  Taedong Yun,et al.  Accurate, scalable cohort variant calls using DeepVariant and GLnexus , 2020, bioRxiv.

[2]  Brent S. Pedersen,et al.  Large, three-generation human families reveal post-zygotic mosaicism and variability in germline mutation accumulation , 2019, eLife.

[3]  Brian E. Cade,et al.  Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program , 2019, Nature.

[4]  Chunlin Xiao,et al.  An open resource for accurately benchmarking small variant and reference calls , 2019, Nature Biotechnology.

[5]  Ryan L. Collins,et al.  The mutational constraint spectrum quantified from variation in 141,456 humans , 2020, Nature.

[6]  Thomas Colthurst,et al.  A universal SNP and small-indel variant caller using deep neural networks , 2018, Nature Biotechnology.

[7]  Brent S. Pedersen,et al.  Whole-genome analysis for effective clinical diagnosis and gene discovery in early infantile epileptic encephalopathy , 2018, npj Genomic Medicine.

[8]  Bharanidharan Devarajan,et al.  Performance assessment of variant calling pipelines using human whole exome sequencing and simulated data , 2018, BMC Bioinformatics.

[9]  Ohad Rodeh,et al.  GLnexus: joint variant calling for large cohort sequencing , 2018, bioRxiv.

[10]  Brent S. Pedersen,et al.  hts-nim: scripting high-performance genomic analyses , 2018, bioRxiv.

[11]  Hannes P. Eggertsson,et al.  Parental influence on human germline de novo mutations in 1,548 trios from Iceland , 2017, Nature.

[12]  Paolo Di Tommaso,et al.  Nextflow enables reproducible computational workflows , 2017, Nature Biotechnology.

[13]  Joan,et al.  Prevalence and architecture of de novo mutations in developmental disorders , 2017, Nature.

[14]  Deciphering Developmental Disorders Study,et al.  Prevalence and architecture of de novo mutations in developmental disorders , 2017, Nature.

[15]  Petr Danecek,et al.  BCFtools/csq: haplotype-aware variant consequences , 2016, bioRxiv.

[16]  Brent S. Pedersen,et al.  Who’s Who? Detecting and Resolving Sample Anomalies in Human DNA Sequencing Studies with Peddy , 2016, bioRxiv.

[17]  F. Cunningham,et al.  The Ensembl Variant Effect Predictor , 2016, bioRxiv.

[18]  Brent S. Pedersen,et al.  Vcfanno: fast, flexible annotation of genetic variants , 2016, bioRxiv.

[19]  James Y. Zou Analysis of protein-coding genetic variation in 60,706 humans , 2015, Nature.

[20]  Karynne E. Patterson,et al.  The Genetic Basis of Mendelian Phenotypes: Discoveries, Challenges, and Opportunities. , 2015, American journal of human genetics.

[21]  Jakob Grove,et al.  Novel variation and de novo mutation rates in population-wide de novo assembled Danish trios , 2015, Nature Communications.

[22]  Stephan J Sanders,et al.  A framework for the interpretation of de novo mutation in human disease , 2014, Nature Genetics.

[23]  Deanna M. Church,et al.  ClinVar: public archive of relationships among sequence variation and human phenotype , 2013, Nucleic Acids Res..

[24]  Aaron R. Quinlan,et al.  GEMINI: Integrative Exploration of Genetic Variation and Genome Annotations , 2013, PLoS Comput. Biol..

[25]  Pablo Cingolani,et al.  © 2012 Landes Bioscience. Do not distribute. , 2022 .

[26]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[27]  Elizabeth M. Smigielski,et al.  dbSNP: the NCBI database of genetic variation , 2001, Nucleic Acids Res..