Light-Activated Gigahertz Ferroelectric Domain Dynamics.

Using time- and spatially resolved hard x-ray diffraction microscopy, the striking structural and electrical dynamics upon optical excitation of a single crystal of BaTiO_{3} are simultaneously captured on subnanoseconds and nanoscale within individual ferroelectric domains and across walls. A large emergent photoinduced electric field of up to 20×10^{6}  V/m is discovered in a surface layer of the crystal, which then drives polarization and lattice dynamics that are dramatically distinct in a surface layer versus bulk regions. A dynamical phase-field modeling method is developed that reveals the microscopic origin of these dynamics, leading to gigahertz polarization and elastic waves traveling in the crystal with sonic speeds and spatially varying frequencies. The advances in spatiotemporal imaging and dynamical modeling tools open up opportunities for disentangling ultrafast processes in complex mesoscale structures such as ferroelectric domains.

[1]  S. Cheong,et al.  Aperiodic topological order in the domain configurations of functional materials , 2017, 1703.03037.

[2]  S. Cheong,et al.  Low-energy structural dynamics of ferroelectric domain walls in hexagonal rare-earth manganites , 2017, Science Advances.

[3]  K. He,et al.  Ultrafast light-induced symmetry changes in single BaTiO3 nanowires , 2017 .

[4]  K. Nelson,et al.  Reply to “Comment on ‘Ultrafast terahertz-field-driven ionic response in ferroelectric BaTiO3 ' ” , 2016, Physical Review B.

[5]  Bosheng Zhang,et al.  High contrast 3D imaging of surfaces near the wavelength limit using tabletop EUV ptychography. , 2015, Ultramicroscopy.

[6]  I. Takeuchi,et al.  Ultrafast Terahertz Gating of the Polarization and Giant Nonlinear Optical Response in BiFeO3 Thin Films , 2015, Advanced materials.

[7]  S. Parkin,et al.  Mesoscopic structural phase progression in photo-excited VO2 revealed by time-resolved x-ray diffraction microscopy , 2015, Scientific Reports.

[8]  M. Fiebig,et al.  Magnetoelectric domain control in multiferroic TbMnO3 , 2015, Science.

[9]  J. Miao,et al.  Beyond crystallography: Diffractive imaging using coherent x-ray light sources , 2015, Science.

[10]  M. Fiebig,et al.  Ultrafast optical tuning of ferromagnetism via the carrier density , 2015, Nature Communications.

[11]  P. Marchet,et al.  Ferroelectric domain wall motion induced by polarized light , 2015, Nature Communications.

[12]  Timothy A. Miller,et al.  Visualization of nanocrystal breathing modes at extreme strains , 2015, Nature Communications.

[13]  Richard D. Averitt,et al.  Dynamics and Control in Complex Transition Metal Oxides , 2014 .

[14]  P. Gao,et al.  Ferroelastic domain switching dynamics under electrical and mechanical excitations , 2014, Nature Communications.

[15]  Sergei V. Kalinin,et al.  Thermotropic phase boundaries in classic ferroelectrics , 2014, Nature Communications.

[16]  M. Murnane,et al.  Tabletop nanometer extreme ultraviolet imaging in an extended reflection mode using coherent Fresnel ptychography , 2013, 1312.2049.

[17]  V. Gopalan,et al.  Structural and electronic recovery pathways of a photoexcited ultrathin VO 2 film , 2013, 1309.5102.

[18]  A. Cavalleri,et al.  Optically enhanced coherent transport in YBa2Cu3O6.5 by ultrafast redistribution of interlayer coupling. , 2013, Nature materials.

[19]  C. M. Folkman,et al.  Imaging local polarization in ferroelectric thin films by coherent x-ray Bragg projection ptychography. , 2013, Physical review letters.

[20]  Qingteng Zhang,et al.  Field-dependent domain distortion and interlayer polarization distribution in PbTiO3/SrTiO3 superlattices. , 2013, Physical review letters.

[21]  H. Wen,et al.  Electronic origin of ultrafast photoinduced strain in BiFeO3. , 2013, Physical review letters.

[22]  James F. Scott,et al.  Domain wall nanoelectronics , 2012 .

[23]  Klaus Sokolowski-Tinten,et al.  Ultrafast photovoltaic response in ferroelectric nanolayers. , 2012, Physical review letters.

[24]  J. Demšar,et al.  Lattice Dynamics of Laser Excited Ferroelectric BaTiO3 , 2012 .

[25]  Enge Wang,et al.  Domain Dynamics During Ferroelectric Switching , 2011, Science.

[26]  J. Jo,et al.  Nanosecond dynamics of ferroelectric/dielectric superlattices. , 2011, Physical review letters.

[27]  L. Vu-Quoc,et al.  Multiple-time-scale analysis of nonlinear modes in ferroelectric LiNbO 3 , 2010 .

[28]  Long-Qing Chen,et al.  Stability of the unswitched polarization state of ultrathin epitaxial Pb(Zr,Ti)O 3 in large electric fields , 2009 .

[29]  A. Simon,et al.  Thermal expansion, polarization and phase diagrams of Ba1−yBi2y/3Ti1−xZrxO3 and Ba1−yLayTi1−y/4O3 compounds , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[30]  M. Baba,et al.  Low- and high-order nonlinear optical properties of BaTiO 3 and SrTiO 3 nanoparticles , 2008 .

[31]  A. Plech,et al.  Dynamics of the laser-induced ferroelectric excitation in BaTiO3 studied by x-ray diffraction , 2007 .

[32]  C. Eom,et al.  NANOSECOND STRUCTURAL VISUALIZATION OF THE REPRODUCIBILITY OF POLARIZATION SWITCHING IN FERROELECTRICS , 2006 .

[33]  C. Eom,et al.  Nanosecond domain wall dynamics in ferroelectric Pb(Zr, Ti)O(3) thin films. , 2006, Physical review letters.

[34]  V. Gopalan,et al.  An approach to the Klein–Gordon equation for a dynamic study in ferroelectric materials , 2006, Journal of physics. Condensed matter : an Institute of Physics journal.

[35]  Gregory J. Salamo,et al.  Nonlinear optical absorption and refraction of epitaxial Ba0.6Sr0.4TiO3 thin films on (001) MgO substrates , 2006 .

[36]  V. Gopalan,et al.  Phenomenological thermodynamic potential for CaTiO3 single crystals , 2005, 1110.3484.

[37]  Shenyang Y. Hu,et al.  Effect of electrical boundary conditions on ferroelectric domain structures in thin films , 2002 .

[38]  L. Chen,et al.  Phase-field model of domain structures in ferroelectric thin films , 2001 .

[39]  Zu-liang Liu,et al.  Nonlinear optical absorption in undoped and cerium-doped BaTiO3 thin films using Z-scan technique , 2000 .

[40]  J. White,et al.  Two-photon absorption and anisotropic transient energy transfer in BaTiO 3 with 1-psec excitation , 1990 .

[41]  Tomoaki Yamada Electromechanical Properties of Oxygen‐Octahedra Ferroelectric Crystals , 1972 .

[42]  H. Motegi X-Ray Study of the Surface Layer on Barium Titanate Single Crystal , 1972 .

[43]  R. E. Nettleton Lattice‐Dynamical Theory of Switching in Barium Titanate Single Crystals , 1967 .

[44]  R. Bell,et al.  Dielectric Constant in Paraelectric Perovskites , 1964 .

[45]  Nicolaas Bloembergen,et al.  Light waves at the boundary of nonlinear media , 1962 .

[46]  W. J. Merz,et al.  Surface Layer in BaTiO3 Single Crystals , 1961 .

[47]  W. J. Merz Switching Time in Ferroelectric BaTiO3 and Its Dependence on Crystal Thickness , 1956 .

[48]  A. G. Chynoweth,et al.  Surface Space-Charge Layers in Barium Titanate , 1956 .

[49]  W. Känzig Space Charge Layer Near the Surface of a Ferroelectric , 1955 .

[50]  R. G. Breckenridge,et al.  High dielectric constant ceramics , 1946 .

[51]  D. Basov,et al.  Nanoscale electrodynamics of strongly correlated quantum materials , 2017, Reports on progress in physics. Physical Society.

[52]  A. C. Lawson,et al.  Structures of the ferroelectric phases of barium titanate , 1993 .