Avoiding Spurious Feedback Loops in the Reconstruction of Gene Regulatory Networks with Dynamic Bayesian Networks

Feedback loops and recurrent structures are essential to the regulation and stable control of complex biological systems. The application of dynamic as opposed to static Bayesian networks is promising in that, in principle, these feedback loops can be learned. However, we show that the widely applied BGe score is susceptible to learning spurious feedback loops, which are a consequence of non-linear regulation and autocorrelation in the data. We propose a non-linear generalisation of the BGe model, based on a mixture model, and demonstrate that this approach successfully represses spurious feedback loops.

[1]  S. Lèbre Analyse de processus stochastiques pour la génomique : étude du modèle MTD et inférence de réseaux bayésiens dynamiques , 2007 .

[2]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[3]  Michal Linial,et al.  Using Bayesian Networks to Analyze Expression Data , 2000, J. Comput. Biol..

[4]  Agostino Nobile,et al.  Bayesian finite mixtures with an unknown number of components: The allocation sampler , 2007, Stat. Comput..

[5]  Dirk Husmeier,et al.  Gene Regulatory Network Reconstruction by Bayesian Integration of Prior Knowledge and/or Different Experimental Conditions , 2008, J. Bioinform. Comput. Biol..

[6]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[7]  ChengXiang Zhai,et al.  Inference of Gene Pathways Using Gaussian Mixture Models , 2007, 2007 IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2007).

[8]  Satoru Miyano,et al.  Bayesian Network and Nonparametric Heteroscedastic Regression for Nonlinear Modeling of Genetic Network , 2003, J. Bioinform. Comput. Biol..

[9]  David Heckerman,et al.  Learning Gaussian Networks , 1994, UAI.

[10]  Gregory F. Cooper,et al.  A Bayesian method for the induction of probabilistic networks from data , 1992, Machine Learning.

[11]  J. York,et al.  Bayesian Graphical Models for Discrete Data , 1995 .

[12]  C. R. McClung,et al.  The Arabidopsis thaliana Clock , 2004, Journal of biological rhythms.

[13]  Marco Grzegorczyk,et al.  Modelling non-stationary gene regulatory processes with a non-homogeneous Bayesian network and the allocation sampler , 2008, Bioinform..

[14]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .