Regression-Based Expected Shortfall Backtesting

In this article, we introduce a regression based backtest for the risk measure Expected Shortfall (ES) which is based on a joint regression framework for the quantile and the ES. We also introduce a second variant of this ES backtest which allows for testing one-sided hypotheses by only testing an intercept parameter. These two backtests are the first backtests in the literature which solely backtest the risk measure ES as they only require ES forecasts as input parameters. In contrast, the existing ES backtesting techniques require forecasts for further quantities such as the Value at Risk, the volatility or even the entire (tail) distribution. As the regulatory authorities only receive forecasts for the ES, backtests including further input parameters are not applicable in practice. We compare the empirical performance of our new backtests to existing approaches in terms of their empirical size and power through several different simulation studies. We find that our backtests clearly outperform the existing backtesting procedures in the literature in terms of their size and (size-adjusted) power properties throughout all considered simulation experiments. We provide an R package for these ES backtests which is easily applicable for practitioners.

[1]  Jeffrey R. Russell,et al.  Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data , 1998 .

[2]  A. McNeil,et al.  Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach , 2000 .

[3]  Naomi S. Altman,et al.  Quantile regression , 2019, Nature Methods.

[4]  S. Weber,et al.  DISTRIBUTION‐INVARIANT RISK MEASURES, INFORMATION, AND DYNAMIC CONSISTENCY , 2006 .

[5]  Michael Curran Backtesting Expected Shortfall , 2014 .

[6]  M. Righi,et al.  Individual and Flexible Expected Shortfall Backtesting , 2013 .

[7]  Bertrand Melenberg,et al.  Backtesting for Risk-Based Regulatory Capital , 2002 .

[8]  Johanna F. Ziegel,et al.  COHERENCE AND ELICITABILITY , 2013, 1303.1690.

[9]  C. Gouriéroux,et al.  PSEUDO MAXIMUM LIKELIHOOD METHODS: THEORY , 1984 .

[10]  Daniel B. Nelson CONDITIONAL HETEROSKEDASTICITY IN ASSET RETURNS: A NEW APPROACH , 1991 .

[11]  W. Newey,et al.  Large sample estimation and hypothesis testing , 1986 .

[12]  Tae-Hwan Kim,et al.  Estimation, Inference, and Specification Testing for Possibly Misspecified Quantile Regression , 2002 .

[13]  S. Koopman,et al.  Predicting Time-Varying Parameters with Parameter-Driven and Observation-Driven Models , 2012 .

[14]  P. J. Huber The behavior of maximum likelihood estimates under nonstandard conditions , 1967 .

[15]  Toshinao Yoshiba,et al.  On the Validity of Value-at-Risk: Comparative Analyses with Expected Shortfall , 2002 .

[16]  David Ardia,et al.  Generalized Autoregressive Score Models in R: The GAS Package , 2016, Journal of Statistical Software.

[17]  J. Orgeldinger Recent Issues in the Implementation of the New Basel Minimum Capital Requirements for Market Risk , 2018 .

[18]  R. Koenker,et al.  Regression Quantiles , 2007 .

[19]  J. Leymarie,et al.  Backtesting Expected Shortfall via Multi-Quantile Regression , 2020 .

[20]  J. MacKinnon Bootstrap Hypothesis Testing , 2007 .

[21]  Halbert White,et al.  Estimation, inference, and specification analysis , 1996 .

[22]  C. Lloyd Estimating test power adjusted for size , 2005 .

[23]  M. Kratz,et al.  What is the Best Risk Measure in Practice? A Comparison of Standard Measures , 2013, 1312.1645.

[24]  D. Peel,et al.  On Testing for Unbiasedness and Efficiency of Forecasts , 1990 .

[25]  Nick Costanzino,et al.  A Simple Traffic Light Approach to Backtesting Expected Shortfall , 2015 .

[26]  David Hinkley,et al.  Bootstrap Methods: Another Look at the Jackknife , 2008 .

[27]  Giovanni Barone-Adesi,et al.  VaR without correlations for portfolios of derivative securities , 1999 .

[28]  Kemal Guler,et al.  Mincer–Zarnowitz quantile and expectile regressions for forecast evaluations under aysmmetric loss functions , 2017 .

[29]  James W. Taylor Forecasting Value at Risk and Expected Shortfall Using a Semiparametric Approach Based on the Asymmetric Laplace Distribution , 2019 .

[30]  Zaichao Du,et al.  Backtesting Expected Shortfall: Accounting for Tail Risk , 2015, Manag. Sci..

[31]  DuZaichao,et al.  Backtesting Expected Shortfall , 2017 .

[32]  T. Sager,et al.  A Three-State Early Warning System for the European Union , 2018 .

[33]  Alexander J. McNeil,et al.  Multinomial VAR Backtests: A Simple Implicit Approach to Backtesting Expected Shortfall , 2016, 1611.04851.

[34]  Jeremy Berkowitz Testing Density Forecasts, With Applications to Risk Management , 2001 .

[35]  H. White Using Least Squares to Approximate Unknown Regression Functions , 1980 .

[36]  W. Wong,et al.  Backtesting Trading Risk of Commercial Banks Using Expected Shortfall , 2008 .

[37]  Drew D. Creal,et al.  Generalized autoregressive score models with applications ∗ , 2010 .

[38]  Romain Deguest,et al.  Robustness and sensitivity analysis of risk measurement procedures , 2008 .

[39]  Peter Reinhard Hansen,et al.  The Model Confidence Set , 2010 .

[40]  Andrew A. Weiss,et al.  Estimating Nonlinear Dynamic Models Using Least Absolute Error Estimation , 1991, Econometric Theory.

[41]  C. Goodhart,et al.  An academic response to Basel II , 2001 .

[42]  A. Harvey Dynamic Models for Volatility and Heavy Tails: With Applications to Financial and Economic Time Series , 2013 .

[43]  L. Glosten,et al.  On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks , 1993 .

[44]  A. Müller,et al.  Generalized Quantiles as Risk Measures , 2013 .

[45]  Dominik Wied,et al.  New Backtests for Unconditional Coverage of Expected Shortfall , 2018 .

[46]  H. White Asymptotic theory for econometricians , 1985 .

[47]  S. Nadarajah,et al.  Estimation methods for expected shortfall , 2014 .

[48]  R. Tibshirani,et al.  An introduction to the bootstrap , 1993 .

[49]  Rui Chen,et al.  Dynamic Semiparametric Models for Expected Shortfall (and Value-At-Risk) , 2017, Journal of Econometrics.

[50]  David I. Harvey The evaluation of economic forecasts , 1997 .

[51]  Ivana Komunjer,et al.  Quasi-maximum likelihood estimation for conditional quantiles , 2005 .

[52]  Johanna F. Ziegel,et al.  Higher order elicitability and Osband’s principle , 2015, 1503.08123.

[53]  Sander Barendse Efficiently Weighted Estimation of Tail and Interquantile Expectations , 2017 .

[54]  R. Koenker,et al.  Hierarchical Spline Models for Conditional Quantiles and the Demand for Electricity , 1990 .

[55]  Nick Costanzino,et al.  Backtesting General Spectral Risk Measures with Application to Expected Shortfall , 2015 .

[56]  Victor Chernozhukov,et al.  Quantile Regression Under Misspecification, with an Application to the U.S. Wage Structure , 2004 .

[57]  Basel ‘Fundamental Review of the Trading Book: A Revised Market Risk Framework’ Second Consultative Document by the Basel Committee on Banking Supervision IMPACT ANALYSIS , 2014 .

[58]  Daniel R. Smith,et al.  Evaluating Value-at-Risk Models via Quantile Regression , 2008 .

[59]  T. Gneiting Making and Evaluating Point Forecasts , 2009, 0912.0902.

[60]  Tilmann Gneiting,et al.  Expected Shortfall is jointly elicitable with Value at Risk - Implications for backtesting , 2015, 1507.00244.

[61]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[62]  Timo Dimitriadis,et al.  A joint quantile and expected shortfall regression framework , 2017, Electronic Journal of Statistics.

[63]  Haiyan Liu,et al.  Quantile-Based Risk Sharing , 2017, Oper. Res..

[64]  Johanna F. Ziegel,et al.  Elicitability and backtesting: Perspectives for banking regulation , 2016, 1608.05498.

[65]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[66]  M. Righi,et al.  A Comparison of Expected Shortfall Estimation Models , 2014 .