Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?

[1]  K. Hahm,et al.  Release of aqueous contents from phospholipid vesicles induced by cecropin A (1-8)-magainin 2 (1-12) hybrid and its analogues. , 2009, The journal of peptide research : official journal of the American Peptide Society.

[2]  V. Regueiro,et al.  Capsule Polysaccharide Mediates Bacterial Resistance to Antimicrobial Peptides , 2004, Infection and Immunity.

[3]  W. Shafer,et al.  Degradation of Human Antimicrobial Peptide LL-37 by Staphylococcus aureus-Derived Proteinases , 2004, Antimicrobial Agents and Chemotherapy.

[4]  R. Suvanasuthi,et al.  Proteus mirabilis ZapA Metalloprotease Degrades a Broad Spectrum of Substrates, Including Antimicrobial Peptides , 2004, Infection and Immunity.

[5]  C. Kirchhoff,et al.  SPAG11/isoform HE2C, an atypical anionic β-defensin-like peptide , 2004, Peptides.

[6]  A. Waring,et al.  Solid-state NMR investigation of the selective perturbation of lipid bilayers by the cyclic antimicrobial peptide RTD-1. , 2004, Biochemistry.

[7]  T. Salditt,et al.  Conformation of peptides in lipid membranes studied by x-ray grazing incidence scattering. , 2004, Biophysical journal.

[8]  Robert E. W. Hancock,et al.  Can innate immunity be enhanced to treat microbial infections? , 2004, Nature Reviews Microbiology.

[9]  Huey W. Huang,et al.  Molecular mechanism of Peptide-induced pores in membranes. , 2004, Physical review letters.

[10]  M. Yeaman,et al.  Multidimensional signatures in antimicrobial peptides. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[11]  S. Yenugu,et al.  The Androgen-Regulated Epididymal Sperm-Binding Protein, Human β-Defensin 118 (DEFB118) (Formerly ESC42), Is an Antimicrobial β-Defensin , 2004 .

[12]  Huey W. Huang,et al.  Energetics of pore formation induced by membrane active peptides. , 2004, Biochemistry.

[13]  Steven F Dowdy,et al.  Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis , 2004, Nature Medicine.

[14]  K. Kavanagh,et al.  Histatins: antimicrobial peptides with therapeutic potential , 2004, The Journal of pharmacy and pharmacology.

[15]  Koh Takeuchi,et al.  Channel-forming Membrane Permeabilization by an Antibacterial Protein, Sapecin , 2004, Journal of Biological Chemistry.

[16]  R. Hancock,et al.  The relationship between peptide structure and antibacterial activity , 2003, Peptides.

[17]  P. McCray,et al.  Antimicrobial peptides in animals and their role in host defences. , 2003, International journal of antimicrobial agents.

[18]  R. Hancock,et al.  Cationic antimicrobial peptides activate a two‐component regulatory system, PmrA‐PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosa , 2003, Molecular microbiology.

[19]  D. Hoover,et al.  Many chemokines including CCL20/MIP‐3α display antimicrobial activity , 2003 .

[20]  T. Ganz Defensins: antimicrobial peptides of innate immunity , 2003, Nature Reviews Immunology.

[21]  W. Forssmann,et al.  Human hemoglobin-derived peptides exhibit antimicrobial activity: a class of host defense peptides. , 2003, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[22]  Fang-Yu Chen,et al.  Evidence for membrane thinning effect as the mechanism for peptide-induced pore formation. , 2003, Biophysical journal.

[23]  Dong-Kuk Lee,et al.  Mechanism of lipid bilayer disruption by the human antimicrobial peptide, LL-37. , 2003, Biochemistry.

[24]  A. Ramamoorthy,et al.  MSI-78, an analogue of the magainin antimicrobial peptides, disrupts lipid bilayer structure via positive curvature strain. , 2003, Biophysical journal.

[25]  R. Allaker,et al.  Adrenomedullin and mucosal defence: interaction between host and microorganism , 2003, Regulatory Peptides.

[26]  H. G. Boman,et al.  Ascaris nematodes from pig and human make three anti-bacterial peptides: isolation of cecropin P1 and two ASABF peptides , 2003, Cellular and Molecular Life Sciences CMLS.

[27]  P. Kinnunen,et al.  Modulation of the Activity of Secretory Phospholipase A2 by Antimicrobial Peptides , 2003, Antimicrobial Agents and Chemotherapy.

[28]  B. Neumeister,et al.  MprF-Mediated Lysinylation of Phospholipids in Staphylococcus aureus Leads to Protection against Oxygen-Independent Neutrophil Killing , 2003, Infection and Immunity.

[29]  M. Selsted,et al.  Antimicrobial Peptides from Human Platelets , 2002, Infection and Immunity.

[30]  Michel Salzet,et al.  Antimicrobial peptides from animals: focus on invertebrates. , 2002, Trends in pharmacological sciences.

[31]  R. Lai,et al.  An anionic antimicrobial peptide from toad Bombina maxima. , 2002, Biochemical and biophysical research communications.

[32]  A. Waring,et al.  Solid-state NMR investigations of peptide-lipid interaction and orientation of a beta-sheet antimicrobial peptide, protegrin. , 2002, Biochemistry.

[33]  A. Waring,et al.  Two states of cyclic antimicrobial peptide RTD-1 in lipid bilayers. , 2002, Biochemistry.

[34]  D. Carr,et al.  Direct antimicrobial properties of substance P. , 2002, Life sciences.

[35]  Jr L. Otvos,et al.  The short proline-rich antibacterial peptide family , 2002, Cellular and molecular life sciences : CMLS.

[36]  E. Greenberg,et al.  A component of innate immunity prevents bacterial biofilm development , 2002, Nature.

[37]  R. Cantor Size distribution of barrel-stave aggregates of membrane peptides: influence of the bilayer lateral pressure profile. , 2002, Biophysical journal.

[38]  R. Hancock,et al.  Sublethal Concentrations of Pleurocidin-Derived Antimicrobial Peptides Inhibit Macromolecular Synthesis in Escherichia coli , 2002, Antimicrobial Agents and Chemotherapy.

[39]  Balaji Ramanathan,et al.  Cathelicidins: microbicidal activity, mechanisms of action, and roles in innate immunity. , 2002, Microbes and infection.

[40]  R. Hancock,et al.  Clinical development of cationic antimicrobial peptides: from natural to novel antibiotics. , 2002, Current drug targets. Infectious disorders.

[41]  M. Dathe,et al.  General aspects of peptide selectivity towards lipid bilayers and cell membranes studied by variation of the structural parameters of amphipathic helical model peptides. , 2002, Biochimica et biophysica acta.

[42]  M. Zasloff Antimicrobial peptides of multicellular organisms , 2002, Nature.

[43]  Nikolaus Blin,et al.  Dermcidin: a novel human antibiotic peptide secreted by sweat glands , 2001, Nature Immunology.

[44]  P. McCray,et al.  Congeners of SMAP29 Kill Ovine Pathogens and Induce Ultrastructural Damage in Bacterial Cells , 2001, Antimicrobial Agents and Chemotherapy.

[45]  P. Kinnunen,et al.  Comparison of the membrane association of two antimicrobial peptides, magainin 2 and indolicidin. , 2001, Biophysical journal.

[46]  Alessandro Tossi,et al.  Amphipathic α helical antimicrobial peptides. , 2001 .

[47]  A. Waring,et al.  Orientation and dynamics of an antimicrobial peptide in the lipid bilayer by solid-state NMR spectroscopy. , 2001, Biophysical journal.

[48]  S. White,et al.  'Detergent-like' permeabilization of anionic lipid vesicles by melittin. , 2001, Biochimica et biophysica acta.

[49]  L. Yang,et al.  Barrel-stave model or toroidal model? A case study on melittin pores. , 2001, Biophysical journal.

[50]  M. Burdick,et al.  Cutting Edge: IFN-Inducible ELR− CXC Chemokines Display Defensin-Like Antimicrobial Activity1 , 2001, The Journal of Immunology.

[51]  Michael Otto,et al.  Staphylococcus aureus Resistance to Human Defensins and Evasion of Neutrophil Killing via the Novel Virulence Factor Mprf Is Based on Modification of Membrane Lipids with l-Lysine , 2001, The Journal of experimental medicine.

[52]  S. Lovas,et al.  The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. , 2001, Biochemistry.

[53]  F. Knoop,et al.  Multiple antimicrobial peptides and peptides related to bradykinin and neuromedin N isolated from skin secretions of the pickerel frog, Rana palustris. , 2000, Biochimica et biophysica acta.

[54]  S. Lovas,et al.  Interaction between heat shock proteins and antimicrobial peptides. , 2000, Biochemistry.

[55]  C. B. Park,et al.  Structure-activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Huey W. Huang,et al.  Action of antimicrobial peptides: two-state model. , 2000, Biochemistry.

[57]  A. Waring,et al.  Membrane thinning effect of the beta-sheet antimicrobial protegrin. , 2000, Biochemistry.

[58]  B. Bechinger,et al.  The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state NMR spectroscopy. , 1999, Biochimica et biophysica acta.

[59]  M. Dathe,et al.  Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. , 1999, Biochimica et biophysica acta.

[60]  Y. Shai,et al.  Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. , 1999, Biochimica et biophysica acta.

[61]  R. Hancock,et al.  Interaction of Cationic Peptides with Lipoteichoic Acid and Gram-Positive Bacteria , 1999, Infection and Immunity.

[62]  T. Weiss,et al.  Supramolecular structures of peptide assemblies in membranes by neutron off-plane scattering: method of analysis. , 1999, Biophysical journal.

[63]  Jun Yuan,et al.  A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated alpha-defensins. , 1999, Science.

[64]  R. Lehrer,et al.  Purification and Properties of Proline-Rich Antimicrobial Peptides from Sheep and Goat Leukocytes , 1999, Infection and Immunity.

[65]  P. McCray,et al.  Differences in the Concentrations of Small, Anionic, Antimicrobial Peptides in Bronchoalveolar Lavage Fluid and in Respiratory Epithelia of Patients with and without Cystic Fibrosis , 1999, Infection and Immunity.

[66]  J. Costerton,et al.  Bacterial biofilms: a common cause of persistent infections. , 1999, Science.

[67]  B. Wiesner,et al.  Structural requirements for cellular uptake of α‐helical amphipathic peptides , 1999 .

[68]  R. Hancock,et al.  Biological Properties of Structurally Related α-Helical Cationic Antimicrobial Peptides , 1999, Infection and Immunity.

[69]  H. Kalbacher,et al.  Inactivation of the dlt Operon inStaphylococcus aureus Confers Sensitivity to Defensins, Protegrins, and Other Antimicrobial Peptides* , 1999, The Journal of Biological Chemistry.

[70]  A. Pellegrini,et al.  Isolation and identification of three bactericidal domains in the bovine α-lactalbumin molecule , 1999 .

[71]  J. Gunn,et al.  The Salmonella typhi melittin resistance gene pqaB affects intracellular growth in PMA-differentiated U937 cells, polymyxin B resistance and lipopolysaccharide. , 1999, Microbiology.

[72]  K. Brogden,et al.  Detection of Anionic Antimicrobial Peptides in Ovine Bronchoalveolar Lavage Fluid and Respiratory Epithelium , 1998, Infection and Immunity.

[73]  Samuel I. Miller,et al.  Lipid A Acylation and Bacterial Resistance against Vertebrate Antimicrobial Peptides , 1998, Cell.

[74]  Alan J. Waring,et al.  Activities of LL-37, a Cathelin-Associated Antimicrobial Peptide of Human Neutrophils , 1998, Antimicrobial Agents and Chemotherapy.

[75]  R. Epand,et al.  Relationship of membrane curvature to the formation of pores by magainin 2. , 1998, Biochemistry.

[76]  T. Weiss,et al.  Neutron off-plane scattering of aligned membranes. I. Method Of measurement. , 1998, Biophysical journal.

[77]  T. Yip,et al.  Bactericidal domain of lactoferrin: detection, quantitation, and characterization of lactoferricin in serum by SELDI affinity mass spectrometry. , 1998, Biochemical and biophysical research communications.

[78]  C. B. Park,et al.  Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. , 1998, Biochemical and biophysical research communications.

[79]  C. Subbalakshmi,et al.  Mechanism of antimicrobial action of indolicidin. , 1998, FEMS microbiology letters.

[80]  W. Shafer,et al.  Modulation of Neisseria gonorrhoeae susceptibility to vertebrate antibacterial peptides due to a member of the resistance/nodulation/division efflux pump family. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[81]  K. Berndt,et al.  Conformation-dependent Antibacterial Activity of the Naturally Occurring Human Peptide LL-37* , 1998, The Journal of Biological Chemistry.

[82]  H. Sahl,et al.  The Lantibiotic Mersacidin Inhibits Peptidoglycan Synthesis by Targeting Lipid II , 1998, Antimicrobial Agents and Chemotherapy.

[83]  S. White,et al.  Critical Role of Lipid Composition in Membrane Permeabilization by Rabbit Neutrophil Defensins* , 1997, The Journal of Biological Chemistry.

[84]  P. Axelsen,et al.  The concentration-dependent membrane activity of cecropin A. , 1997, Biochemistry.

[85]  K. Miyajima,et al.  Pore formation and translocation of melittin. , 1997, Biophysical journal.

[86]  N. Fujii,et al.  Interactions of an antimicrobial peptide, magainin 2, with outer and inner membranes of Gram-negative bacteria. , 1997, Biochimica et biophysica acta.

[87]  K. Brogden,et al.  Small, anionic, and charge-neutralizing propeptide fragments of zymogens are antimicrobial , 1997, Antimicrobial agents and chemotherapy.

[88]  J. Carver,et al.  The solution structure and activity of caerin 1.1, an antimicrobial peptide from the Australian green tree frog, Litoria splendida. , 1997, European journal of biochemistry.

[89]  S. Miller,et al.  Regulation of lipid A modifications by Salmonella typhimurium virulence genes phoP-phoQ. , 1997, Science.

[90]  O. Oishi,et al.  Conformations and orientations of aromatic amino acid residues of tachyplesin I in phospholipid membranes. , 1997, Biochemistry.

[91]  S. White,et al.  Sizing membrane pores in lipid vesicles by leakage of co-encapsulated markers: pore formation by melittin. , 1997, Biophysical journal.

[92]  R. Hancock,et al.  Peptide antibiotics , 1997, The Lancet.

[93]  S H White,et al.  Bilayer interactions of indolicidin, a small antimicrobial peptide rich in tryptophan, proline, and basic amino acids. , 1997, Biophysical journal.

[94]  S J Ludtke,et al.  Membrane pores induced by magainin. , 1996, Biochemistry.

[95]  H. Nikaido Multidrug efflux pumps of gram-negative bacteria , 1996, Journal of bacteriology.

[96]  N. Fujii,et al.  An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. , 1996, Biochemistry.

[97]  S. Ludtke,et al.  Neutron scattering in the plane of membranes: structure of alamethicin pores. , 1996, Biophysical journal.

[98]  R. van Furth,et al.  Role of YadA in resistance to killing of Yersinia enterocolitica by antimicrobial polypeptides of human granulocytes , 1996, Infection and immunity.

[99]  D. D. Ourth,et al.  Formation of pores in Escherichia coli cell membranes by a cecropin isolated from hemolymph of Heliothis virescens larvae. , 1996, European journal of biochemistry.

[100]  J. Bland,et al.  Isolation of an ovine pulmonary surfactant-associated anionic peptide bactericidal for Pasteurella haemolytica. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[101]  D. S. McVey,et al.  Antibacterial activity of a synthetic peptide (PR-26) derived from PR-39, a proline-arginine-rich neutrophil antimicrobial peptide , 1996, Antimicrobial agents and chemotherapy.

[102]  S. Ludtke,et al.  Membrane thinning caused by magainin 2. , 1995, Biochemistry.

[103]  S. Ludtke,et al.  Antimicrobial peptide pores in membranes detected by neutron in-plane scattering. , 1995, Biochemistry.

[104]  T. Ganz,et al.  Structures of genes for two cathelin‐associated antimicrobial peptides: prophenin‐2 and PR‐39 , 1995, FEBS letters.

[105]  Y. Shai Molecular recognition between membrane-spanning polypeptides. , 1995, Trends in biochemical sciences.

[106]  K. Miyajima,et al.  Kinetics of pore formation by an antimicrobial peptide, magainin 2, in phospholipid bilayers. , 1995, Biochemistry.

[107]  Y. Shai,et al.  Interaction of the mammalian antibacterial peptide cecropin P1 with phospholipid vesicles. , 1995, Biochemistry.

[108]  S. Ludtke,et al.  X-ray diffraction study of lipid bilayer membranes interacting with amphiphilic helical peptides: diphytanoyl phosphatidylcholine with alamethicin at low concentrations. , 1995, Biophysical journal.

[109]  N. Fujii,et al.  Molecular basis for membrane selectivity of an antimicrobial peptide, magainin 2. , 1995, Biochemistry.

[110]  E. Groisman,et al.  How bacteria resist killing by host-defense peptides. , 1994, Trends in microbiology.

[111]  S. White,et al.  Interactions between human defensins and lipid bilayers: Evidence for formation of multimeric pores , 1994, Protein science : a publication of the Protein Society.

[112]  P. Fehlbaum,et al.  Insect immunity. Septic injury of Drosophila induces the synthesis of a potent antifungal peptide with sequence homology to plant antifungal peptides. , 1994, The Journal of biological chemistry.

[113]  K. Roland,et al.  Isolation and characterization of a gene, pmrD, from Salmonella typhimurium that confers resistance to polymyxin when expressed in multiple copies , 1994, Journal of bacteriology.

[114]  A. Mor,et al.  Structure, synthesis, and activity of dermaseptin b, a novel vertebrate defensive peptide from frog skin: relationship with adenoregulin. , 1994, Biochemistry.

[115]  H. Duclohier,et al.  Anion pores from magainins and related defensive peptides. , 1994, Toxicology.

[116]  S. Opella,et al.  Structure and orientation of the antibiotic peptide magainin in membranes by solid‐state nuclear magnetic resonance spectroscopy , 1993, Protein science : a publication of the Protein Society.

[117]  M. T. Baer,et al.  Molecular genetic analysis of a locus required for resistance to antimicrobial peptides in Salmonella typhimurium. , 1993, The EMBO journal.

[118]  J. Hoffmann,et al.  Insect defensin, an inducible antibacterial peptide, forms voltage-dependent channels in Micrococcus luteus. , 1993, The Journal of biological chemistry.

[119]  D. Eisenberg,et al.  Defensins promote fusion and lysis of negatively charged membranes , 1993, Protein science : a publication of the Protein Society.

[120]  R. Lehrer,et al.  Protegrins: leukocyte antimicrobial peptides that combine features of corticostatic defensins and tachyplesins , 1993, FEBS letters.

[121]  H. G. Boman,et al.  Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine , 1993, Infection and immunity.

[122]  P. Tempst,et al.  Functional and chemical characterization of Hymenoptaecin, an antibacterial polypeptide that is infection-inducible in the honeybee (Apis mellifera). , 1993, The Journal of biological chemistry.

[123]  E. Groisman,et al.  Resistance to host antimicrobial peptides is necessary for Salmonella virulence. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[124]  Y. Shai,et al.  Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes. , 1992, Biochemistry.

[125]  R. Farías,et al.  Microcin 25, a novel antimicrobial peptide produced by Escherichia coli , 1992, Journal of bacteriology.

[126]  Y. Sugiura,et al.  Binding of tachyplesin I to DNA revealed by footprinting analysis: significant contribution of secondary structure to DNA binding and implication for biological action. , 1992, Biochemistry.

[127]  Wayne L. Smith,et al.  Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. , 1992, The Journal of biological chemistry.

[128]  P. Kraulis A program to produce both detailed and schematic plots of protein structures , 1991 .

[129]  H. Guy,et al.  A novel endopeptidase from Xenopus that recognizes α-helical secondary structure , 1991, Cell.

[130]  G. Olah,et al.  Method of oriented circular dichroism. , 1990, Biophysical journal.

[131]  H V Westerhoff,et al.  Magainins and the disruption of membrane-linked free-energy transduction. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[132]  T. Ganz,et al.  Interaction of human defensins with Escherichia coli. Mechanism of bactericidal activity. , 1989, The Journal of clinical investigation.

[133]  H. Westerhoff,et al.  Magainin 2 amide and analogues Antimicrobial activity, membrane depolarization and susceptibility to proteolysis , 1989, FEBS letters.

[134]  R. B. Merrifield,et al.  Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[135]  M. Zasloff,et al.  Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[136]  H. Sahl,et al.  Autolytic system of Staphylococcus simulans 22: influence of cationic peptides on activity of N-acetylmuramoyl-L-alanine amidase , 1987, Journal of bacteriology.

[137]  D. Hultmark,et al.  Sequence and specificity of two antibacterial proteins involved in insect immunity , 1981, Nature.

[138]  H Lecar,et al.  Electrically gated ionic channels in lipid bilayers , 1977, Quarterly Reviews of Biophysics.

[139]  M. Shilo,et al.  Interaction of Gram-Negative Bacteria with the Lysosomal Fraction of Polymorphonuclear Leukocytes I. Role of Cell Wall Composition of Salmonella typhimurium , 1970, Infection and immunity.

[140]  I. Friedberg,et al.  Interaction of Gram-Negative Bacteria with the Lysosomal Fraction of Polymorphonuclear Leukocytes II. Changes in the Cell Envelope of Escherichia coli , 1970, Infection and immunity.

[141]  H. I. Zeya,et al.  Antibacterial and Enzymic Basic Proteins from Leukocyte Lysosomes: Separation and Identification , 1963, Science.

[142]  R. Skarnes,et al.  Antimicrobial factors of normal tissues and fluids. , 1957, Bacteriological reviews.

[143]  J. G. Hirsch PHAGOCYTIN: A BACTERICIDAL SUBSTANCE FROM POLYMORPHONUCLEAR LEUCOCYTES , 1956, The Journal of experimental medicine.

[144]  A. Fleming On a Remarkable Bacteriolytic Element Found in Tissues and Secretions , 1922 .

[145]  R. Lehrer,et al.  Primate defensins , 2004, Nature Reviews Microbiology.

[146]  P. McCray,et al.  β-Defensins in Lung Host Defense , 2002 .

[147]  E. Vivés,et al.  Cell-penetrating Peptides A REEVALUATION OF THE MECHANISM OF CELLULAR UPTAKE* , 2002 .

[148]  R. Gennaro,et al.  Structural features and biological activities of the cathelicidin-derived antimicrobial peptides. , 2000, Biopolymers.

[149]  Gupta,et al.  The concentration-dependent membrane activity of cecropin A , 1999, Biochemistry.

[150]  D. Andreu,et al.  Animal antimicrobial peptides: an overview. , 1998, Biopolymers.

[151]  Y. Shai,et al.  Mode of action of linear amphipathic α-helical antimicrobial peptides , 1998 .

[152]  Lin Yang Neutron off-plane scattering of aligned membranes , 1998 .

[153]  E A Merritt,et al.  Raster3D: photorealistic molecular graphics. , 1997, Methods in enzymology.

[154]  H. G. Boman,et al.  Peptide antibiotics and their role in innate immunity. , 1995, Annual review of immunology.

[155]  R I Lehrer,et al.  Defensins: antimicrobial and cytotoxic peptides of mammalian cells. , 1993, Annual review of immunology.

[156]  T. Ganz,et al.  Antimicrobial defensin peptides form voltage-dependent ion-permeable channels in planar lipid bilayer membranes. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[157]  D. Hultmark,et al.  Cell-free immunity in insects. , 1987, Annual review of microbiology.

[158]  P. Elsbach,et al.  Partial characterization and purification of a rabbit granulocyte factor that increases permeability of Escherichia coli. , 1975, The Journal of clinical investigation.