Recovery of ultramafic soil functions and plant communities along an age-gradient of the actinorhizal tree Ceuthostoma terminale (Casuarinaceae) in Sabah (Malaysia)

[1]  G. Echevarria Genesis and Behaviour of Ultramafic Soils and Consequences for Nickel Biogeochemistry , 2020, Agromining: Farming for Metals.

[2]  Carreño Carreño,et al.  Evaluación de la diversidad taxonómica y funcional de la comunidad microbiana relacionada con el ciclo del nitrógeno en suelos de cultivo de arroz con diferentes manejos del tamo , 2020 .

[3]  M. Edraki,et al.  Environmental geochemistry of the abandoned Mamut Copper Mine (Sabah) Malaysia , 2018, Environmental Geochemistry and Health.

[4]  N. Rajakaruna,et al.  Ultramafic geoecology of South and Southeast Asia , 2017, Botanical Studies.

[5]  V. M. Dörken,et al.  Morpho-anatomical studies on the leaf reduction in Casuarina: the ecology of xeromorphy , 2017, Trees.

[6]  C. Garbisu,et al.  Enhancement of ecosystem services during endophyte-assisted aided phytostabilization of metal contaminated mine soil. , 2016, The Science of the total environment.

[7]  D. Mulligan,et al.  Vegetation on ultramafic edaphic ‘islands’ in Kinabalu Park (Sabah, Malaysia) in relation to soil chemistry and elevation , 2016, Plant and Soil.

[8]  D. Driscoll,et al.  A succession of theories: purging redundancy from disturbance theory , 2016, Biological reviews of the Cambridge Philosophical Society.

[9]  Alfred E. Hartemink,et al.  Linking soils to ecosystem services — A global review , 2016 .

[10]  K. Barry,et al.  Pervasive and strong effects of plants on soil chemistry: a meta-analysis of individual plant ‘Zinke’ effects , 2015, Proceedings of the Royal Society B: Biological Sciences.

[11]  J. Weiner,et al.  Copper tolerant Elsholtzia splendens facilitates Commelina communis on a copper mine spoil , 2015, Plant and Soil.

[12]  J. Sugau,et al.  Plant diversity and ecology of ultramafic outcrops in Sabah (Malaysia) , 2015 .

[13]  R. Repin,et al.  Global research on ultramafic (serpentine) ecosystems (8th International Conference on Serpentine Ecology in Sabah, Malaysia) , 2015 .

[14]  R. Repin,et al.  Global research on ultramafic (serpentine) ecosystems (8th International Conference on Serpentine Ecology in Sabah, Malaysia): a summary and synthesis , 2015 .

[15]  Benjamin L Turner,et al.  Leaf manganese accumulation and phosphorus-acquisition efficiency. , 2015, Trends in plant science.

[16]  A. Valiente‐Banuet,et al.  Facilitation allows plant coexistence in Cuban serpentine soils. , 2014, Plant biology.

[17]  Benjamin L Turner,et al.  Foliar nutrient concentrations and resorption efficiency in plants of contrasting nutrient‐acquisition strategies along a 2‐million‐year dune chronosequence , 2014 .

[18]  L. Laplaze,et al.  Use of Frankia and Actinorhizal Plants for Degraded Lands Reclamation , 2013, BioMed research international.

[19]  G. Mudd,et al.  A Detailed Assessment of Global Nickel Resource Trends and Endowments , 2013 .

[20]  Linda K. Dick,et al.  Evaluation of microplate and bench-scale β-glucosidase assays for reproducibility, comparability, kinetics, and homogenization methods in two soils , 2013, Biology and Fertility of Soils.

[21]  A. Tjoa,et al.  Ultramafic nickel laterites in Indonesia (Sulawesi, Halmahera): mining, nickel hyperaccumulators and opportunities for phytomining , 2013 .

[22]  K. Hattori,et al.  Serpentinites: Essential Roles in Geodynamics, Arc Volcanism, Sustainable Development, and the Origin of Life , 2013 .

[23]  D. Wallace,et al.  An Inherited Heteroplasmic Mutation in Mitochondrial Gene COI in a Patient with Prostate Cancer Alters Reactive Oxygen, Reactive Nitrogen and Proliferation , 2012, BioMed research international.

[24]  Amilcare Porporato,et al.  Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants , 2012 .

[25]  R. Dahlgren,et al.  Increased forest ecosystem carbon and nitrogen storage from nitrogen rich bedrock , 2011, Nature.

[26]  W. Sayed Improving Casuarina growth and symbiosis with Frankia under different soil and environmental conditions—review , 2011, Folia Microbiologica.

[27]  É. Martins,et al.  Mobility of metals in nickel mine spoil materials , 2010 .

[28]  A. Sheoran,et al.  Soil Reclamation of Abandoned Mine Land by Revegetation: A Review , 2010 .

[29]  V. Claassen,et al.  Serpentine Revegetation: A Review , 2009 .

[30]  A. Troumbis,et al.  Hypotheses, mechanisms and trade‐offs of tolerance and adaptation to serpentine soils: from species to ecosystem level , 2008, Biological reviews of the Cambridge Philosophical Society.

[31]  J. Cornelissen,et al.  Plant functional traits and soil carbon sequestration in contrasting biomes. , 2008, Ecology letters.

[32]  D. R. Benson,et al.  Recent advances in the biogeography and genecology of symbiotic Frankia and its host plants , 2007 .

[33]  H. D. Bradshaw,et al.  Evolutionary Ecology of Plant Adaptation to Serpentine Soils , 2005 .

[34]  Maria del Mar Alguacil,et al.  Use of microbiological indicators for evaluating success in soil restoration after revegetation of a mining area under subtropical conditions , 2005 .

[35]  Hans Lambers,et al.  Cluster Roots: A Curiosity in Context , 2005, Plant and Soil.

[36]  E. Alexander Serpentine Soil Redness, Differences among Peridotite and Serpentinite Materials, Klamath Mountains, California , 2004 .

[37]  David E. Salt,et al.  Research Priorities for Conservation of Metallophyte Biodiversity and their Potential for Restoration and Site Remediation , 2004 .

[38]  M. Wong,et al.  Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. , 2002, Chemosphere.

[39]  N. Enright,et al.  The Role of Cloud Combing and Shading by Isolated Trees in the Succession from Maquis to Rain Forest in New Caledonia1 , 2002 .

[40]  G. Adam,et al.  Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils , 2001 .

[41]  A. D. Bradshaw,et al.  The use of natural processes in reclamation : advantages and difficulties , 2000 .

[42]  A. Willis,et al.  Current approaches to the revegetation and reclamation of metalliferous mine wastes. , 2000, Chemosphere.

[43]  H. G. Diem,et al.  Cluster Roots in Casuarinaceae: Role and Relationship to Soil Nutrient Factors , 2000 .

[44]  T. Jaffré,et al.  Fire and succession in the ultramafic maquis of New Caledonia , 1999 .

[45]  Keith R. Skene Cluster roots: some ecological considerations , 1998 .

[46]  Christian P. Giardina,et al.  Why do Tree Species Affect Soils? The Warp and Woof of Tree-soil Interactions , 1998 .

[47]  A. D. Bradshaw,et al.  Restoration of mined lands—using natural processes , 1997 .

[48]  N. Bolan,et al.  Processes of soil acidification during nitrogen cycling with emphasis on legume based pastures , 1991, Plant and Soil.

[49]  L. Johnson Notes on Casuarinaceae III: The new genus Ceuthostoma , 1988 .

[50]  E. Kandeler,et al.  Short-term assay of soil urease activity using colorimetric determination of ammonium , 1988, Biology and Fertility of Soils.

[51]  W. Lindsay,et al.  Development of a DTPA soil test for zinc, iron, manganese and copper , 1978 .

[52]  J. Connell,et al.  Mechanisms of Succession in Natural Communities and Their Role in Community Stability and Organization , 1977, The American Naturalist.

[53]  J. Braun-Blanquet,et al.  Pflanzensoziologie: Grundzuge der Vegetationskunde. , 1967 .

[54]  A. Jongerius,et al.  The preparation of mammoth-sized thin sections , 1964 .

[55]  D. Cardace,et al.  Ecological implications of pedogenesis and geochemistry of ultramafic soils in Kinabalu Park (Malaysia) , 2018 .

[56]  E. A. Kirkby,et al.  Introduction, Definition and Classification of Nutrients , 2012 .

[57]  P. Legendre,et al.  vegan : Community Ecology Package. R package version 1.8-5 , 2007 .

[58]  J. Dawson Ecology Of Actinorhizal Plants , 2007 .

[59]  Nagaraja,et al.  Decomposition Rates of Litter and Nutrient Release Pattern in a Tropical Soil , 2000 .

[60]  N. Breemen Plant-induced soil changes: Processes and feedbacks , 1998, Developments in Biogeochemistry.

[61]  R. Turco,et al.  Soil Enzyme Activities and Biodiversity Measurements as Integrative Microbiological Indicators , 1996 .

[62]  A. Jongerius,et al.  Methods in soil micromorphology : a technique for the preparation of large thin sections , 1975 .