Strength–duration relationship for intra- versus extracellular stimulation with microelectrodes

[1]  N. Logothetis,et al.  Direct electrical stimulation of human cortex — the gold standard for mapping brain functions? , 2011, Nature Reviews Neuroscience.

[2]  N. Maccarthy,et al.  Monopolar vs. bipolar subretinal stimulation—An in vitro study , 2011, Journal of Neuroscience Methods.

[3]  J. Holsheimer,et al.  The Effect of Pulse Width and Contact Configuration on Paresthesia Coverage in Spinal Cord Stimulation , 2011, Neurosurgery.

[4]  J. D. Weiland,et al.  Resolution of the Epiretinal Prosthesis is not Limited by Electrode Size , 2011, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[5]  F. Rattay,et al.  Which elements of the mammalian central nervous system are excited by low current stimulation with microelectrodes? , 2010, Neuroscience.

[6]  Daniel Palanker,et al.  Strength-duration relationship for extracellular neural stimulation: numerical and analytical models. , 2010, Journal of neurophysiology.

[7]  Warren M Grill,et al.  Efficiency Analysis of Waveform Shape for Electrical Excitation of Nerve Fibers , 2010, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[8]  廣瀬雄一,et al.  Neuroscience , 2019, Workplace Attachments.

[9]  A. Fisahn,et al.  Kv7/KCNQ Channels Control Action Potential Phasing of Pyramidal Neurons during Hippocampal Gamma Oscillations In Vitro , 2009, The Journal of Neuroscience.

[10]  Yousheng Shu,et al.  Distinct contributions of Nav1.6 and Nav1.2 in action potential initiation and backpropagation , 2009, Nature Neuroscience.

[11]  W. N. Ross,et al.  Synaptic Activation and Membrane Potential Changes Modulate the Frequency of Spontaneous Elementary Ca2+ Release Events in the Dendrites of Pyramidal Neurons , 2009, The Journal of Neuroscience.

[12]  Mark S Humayun,et al.  Predicting visual sensitivity in retinal prosthesis patients. , 2009, Investigative ophthalmology & visual science.

[13]  N. Keren,et al.  Experimentally guided modelling of dendritic excitability in rat neocortical pyramidal neurones , 2009, The Journal of physiology.

[14]  S. Fried,et al.  Axonal sodium-channel bands shape the response to electric stimulation in retinal ganglion cells. , 2009, Journal of neurophysiology.

[15]  E. J. Tehovnik,et al.  Microstimulation of visual cortex to restore vision. , 2009, Progress in brain research.

[16]  John S. Pezaris,et al.  Simulations of Electrode Placement for a Thalamic Visual Prosthesis , 2009, IEEE Transactions on Biomedical Engineering.

[17]  D. McCormick,et al.  Cortical Action Potential Backpropagation Explains Spike Threshold Variability and Rapid-Onset Kinetics , 2008, The Journal of Neuroscience.

[18]  E. Chichilnisky,et al.  High-Resolution Electrical Stimulation of Primate Retina for Epiretinal Implant Design , 2008, The Journal of Neuroscience.

[19]  P. J. Sjöström,et al.  Dendritic excitability and synaptic plasticity. , 2008, Physiological reviews.

[20]  N. Spruston Pyramidal neurons: dendritic structure and synaptic integration , 2008, Nature Reviews Neuroscience.

[21]  M. Dimitrijevic,et al.  Human lumbar cord circuitries can be activated by extrinsic tonic input to generate locomotor-like activity. , 2007, Human movement science.

[22]  Ethan D Cohen,et al.  Prosthetic interfaces with the visual system: biological issues , 2007, Journal of neural engineering.

[23]  G. Spincemaille,et al.  Spinal cord stimulation for ischemic heart disease and peripheral vascular disease. , 2007, Advances and technical standards in neurosurgery.

[24]  G. Stuart,et al.  Site of Action Potential Initiation in Layer 5 Pyramidal Neurons , 2006, The Journal of Neuroscience.

[25]  F. Werblin,et al.  A method for generating precise temporal patterns of retinal spiking using prosthetic stimulation. , 2006, Journal of neurophysiology.

[26]  Michael L. Hines,et al.  The NEURON Book , 2006 .

[27]  B. Walmsley,et al.  Non-random nature of spontaneous mIPSCs in mouse auditory brainstem neurons revealed by recurrence quantification analysis , 2005, Proceedings of the Royal Society B: Biological Sciences.

[28]  L. Merabet,et al.  Development of a cortical visual neuroprosthesis for the blind: the relevance of neuroplasticity , 2005, Journal of neural engineering.

[29]  R. Jensen,et al.  Thresholds for activation of rabbit retinal ganglion cells with relatively large, extracellular microelectrodes. , 2005, Investigative ophthalmology & visual science.

[30]  R.E. Suarez-Antola The time constants for the electric stimulation of nerve an muscle fibers by point electrodes , 2005, Conference Proceedings. 2nd International IEEE EMBS Conference on Neural Engineering, 2005..

[31]  Jason Dowling,et al.  Artificial human vision , 2005, Expert review of medical devices.

[32]  J. Iles,et al.  Simple models of stimulation of neurones in the brain by electric fields. , 2005, Progress in biophysics and molecular biology.

[33]  Frank Rattay,et al.  Effective electrode configuration for selective stimulation with inner eye prostheses , 2004, IEEE Transactions on Biomedical Engineering.

[34]  Nicholas T. Carnevale,et al.  ModelDB: A Database to Support Computational Neuroscience , 2004, Journal of Computational Neuroscience.

[35]  W. Grill,et al.  Sensitivity of temporal excitation properties to the neuronal element activated by extracellular stimulation , 2004, Journal of Neuroscience Methods.

[36]  Leslie A. Geddes,et al.  Accuracy limitations of chronaxie values , 2004, IEEE Transactions on Biomedical Engineering.

[37]  R. Shepherd,et al.  Electrical Stimulation of the Auditory Nerve: Single Neuron Strength-Duration Functions in Deafened Animals , 2001, Annals of Biomedical Engineering.

[38]  G. Shepherd,et al.  Emerging rules for the distributions of active dendritic conductances , 2002, Nature Reviews Neuroscience.

[39]  E. Zrenner Will Retinal Implants Restore Vision ? , 2002 .

[40]  Frank Rattay,et al.  Electrical Nerve Stimulation: "Theory, Experiments And Applications" , 2001 .

[41]  F Rattay,et al.  Epidural electrical stimulation of posterior structures of the human lumbosacral cord: 2. quantitative analysis by computer modeling , 2000, Spinal Cord.

[42]  T. Velte,et al.  A computational model of electrical stimulation of the retinal ganglion cell , 1999, IEEE Transactions on Biomedical Engineering.

[43]  F. Rattay,et al.  The basic mechanism for the electrical stimulation of the nervous system , 1999, Neuroscience.

[44]  J. Bullier,et al.  Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter I. Evidence from chronaxie measurements , 1998, Experimental Brain Research.

[45]  D. W. Smith,et al.  Effects of electrode configuration on psychophysical strength-duration functions for single biphasic electrical stimuli in cats. , 1997, The Journal of the Acoustical Society of America.

[46]  N. Spruston,et al.  Action potential initiation and backpropagation in neurons of the mammalian CNS , 1997, Trends in Neurosciences.

[47]  T. Sejnowski,et al.  A model of spike initiation in neocortical pyramidal neurons , 1995, Neuron.

[48]  B.J. Roth,et al.  A mathematical model of make and break electrical stimulation of cardiac tissue by a unipolar anode or cathode , 1995, IEEE Transactions on Biomedical Engineering.

[49]  D. Durand,et al.  Modeling the effects of electric fields on nerve fibers: Determination of excitation thresholds , 1992, IEEE Transactions on Biomedical Engineering.

[50]  L. Geddes,et al.  The chronaxie for myocardium and motor nerve in the dog with chest-surface electrodes , 1992, IEEE Transactions on Biomedical Engineering.

[51]  G. Weiss Sur la possibilite de rendre comparables entre eux les appareils servant a l'excitation electrique. , 1990 .

[52]  F Rattay,et al.  Ways to approximate current-distance relations for electrically stimulated fibers. , 1987, Journal of theoretical biology.

[53]  F. Rattay Analysis of Models for External Stimulation of Axons , 1986, IEEE Transactions on Biomedical Engineering.

[54]  D. C. West,et al.  Strength‐duration characteristics of myelinated and non‐myelinated bulbospinal axons in the cat spinal cord. , 1983, The Journal of physiology.

[55]  JOHN W. Moore Membranes, ions, and impulses , 1976 .

[56]  J. B. Ranck,et al.  Which elements are excited in electrical stimulation of mammalian central nervous system: A review , 1975, Brain Research.

[57]  G. Brindley,et al.  The site of electrical excitation of the human eye , 1955, The Journal of physiology.

[58]  A. Hodgkin,et al.  Measurement of current‐voltage relations in the membrane of the giant axon of Loligo , 1952, The Journal of physiology.

[59]  H. A. Blair ON THE MEASURE OF EXCITABILITY , 1932, The Journal of general physiology.

[60]  L. Lapicque THE CHRONAXIC SWITCHING IN THE NERVOUS SYSTEM. , 1929, Science.

[61]  W. Rushton The effect upon the threshold for nervous excitation of the length of nerve exposed, and the angle between current and nerve , 1927, The Journal of physiology.