Hybrid method for the chemical master equation

The chemical master equation is solved by a hybrid method coupling a macroscopic, deterministic description with a mesoscopic, stochastic model. The molecular species are divided into one subset where the expected values of the number of molecules are computed and one subset with species with a stochastic variation in the number of molecules. The macroscopic equations resemble the reaction rate equations and the probability distribution for the stochastic variables satisfy a master equation. The probability distribution is obtained by the Stochastic Simulation Algorithm due to Gillespie. The equations are coupled via a summation over the mesoscale variables. This summation is approximated by Quasi-Monte Carlo methods. The error in the approximations is analyzed. The hybrid method is applied to three chemical systems from molecular cell biology.

[1]  Eric Vanden-Eijnden,et al.  Nested stochastic simulation algorithm for chemical kinetic systems with disparate rates. , 2005, The Journal of chemical physics.

[2]  H. Faure Discrépance de suites associées à un système de numération (en dimension s) , 1982 .

[3]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[4]  E. Hairer,et al.  Solving Ordinary Differential Equations I , 1987 .

[5]  Clifford Stein,et al.  Introduction to Algorithms, 2nd edition. , 2001 .

[6]  Yiannis Kaznessis,et al.  Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions. , 2005, The Journal of chemical physics.

[7]  C. Rao,et al.  Stochastic chemical kinetics and the quasi-steady-state assumption: Application to the Gillespie algorithm , 2003 .

[8]  A. Owen Monte Carlo Variance of Scrambled Net Quadrature , 1997 .

[9]  Per Lötstedt,et al.  Conservative solution of the Fokker–Planck equation for stochastic chemical reactions , 2006 .

[10]  Jehoshua Bruck,et al.  Scaffold proteins may biphasically affect the levels of mitogen-activated protein kinase signaling and reduce its threshold properties. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[11]  R. Caflisch,et al.  Smoothness and dimension reduction in Quasi-Monte Carlo methods , 1996 .

[12]  J. Rawlings,et al.  Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics , 2002 .

[13]  R. Caflisch Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.

[14]  M. Ehrenberg,et al.  Stochastic focusing: fluctuation-enhanced sensitivity of intracellular regulation. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Per Lötstedt,et al.  Numerical method for coupling the macro and meso scales in stochastic chemical kinetics , 2007 .

[16]  Paul Glasserman,et al.  Monte Carlo Methods in Financial Engineering , 2003 .

[17]  Conrad J. Burden,et al.  A stochastic model of gene switches , 2005 .

[18]  Hiroaki Kitano,et al.  The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models , 2003, Bioinform..

[19]  E. Hairer,et al.  Solving ordinary differential equations I (2nd revised. ed.): nonstiff problems , 1993 .

[20]  D. Gillespie A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions , 1976 .

[21]  Fred J. Hickernell,et al.  Algorithm 823: Implementing scrambled digital sequences , 2003, TOMS.

[22]  H. Lodish Molecular Cell Biology , 1986 .

[23]  A. Kierzek,et al.  Bridging the gap between stochastic and deterministic regimes in the kinetic simulations of the biochemical reaction networks. , 2004, Biophysical journal.

[24]  D. Sherrington Stochastic Processes in Physics and Chemistry , 1983 .

[25]  Linda R Petzold,et al.  The slow-scale stochastic simulation algorithm. , 2005, The Journal of chemical physics.

[26]  Per Lötstedt,et al.  Fokker–Planck approximation of the master equation in molecular biology , 2009 .

[27]  C. Rao,et al.  Control, exploitation and tolerance of intracellular noise , 2002, Nature.

[28]  A. Arkin,et al.  Stochastic mechanisms in gene expression. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Melvin K. Simmons,et al.  Hybrid simulation of cellular behavior , 2004, Bioinform..

[30]  Yang Cao,et al.  Multiscale stochastic simulation algorithm with stochastic partial equilibrium assumption for chemically reacting systems , 2005 .

[31]  D G Vlachos,et al.  Overcoming stiffness in stochastic simulation stemming from partial equilibrium: a multiscale Monte Carlo algorithm. , 2005, The Journal of chemical physics.

[32]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[33]  S. Leibler,et al.  Mechanisms of noise-resistance in genetic oscillators , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Ioannis G Kevrekidis,et al.  Gene regulatory networks: a coarse-grained, equation-free approach to multiscale computation. , 2005, The Journal of chemical physics.

[35]  Pll Siinksen,et al.  Control , 1999, Diabetic medicine : a journal of the British Diabetic Association.

[36]  C. J. Burden,et al.  A solver for the stochastic master equation applied to gene regulatory networks , 2007 .

[37]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[38]  D. Gillespie Approximate accelerated stochastic simulation of chemically reacting systems , 2001 .

[39]  E Weinan,et al.  Nested stochastic simulation algorithms for chemical kinetic systems with multiple time scales , 2007, J. Comput. Phys..

[40]  S. Leibler,et al.  Biological rhythms: Circadian clocks limited by noise , 2000, Nature.

[41]  Roger B. Sidje,et al.  Multiscale Modeling of Chemical Kinetics via the Master Equation , 2008, Multiscale Model. Simul..

[42]  M. Thattai,et al.  Intrinsic noise in gene regulatory networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Stefan Engblom,et al.  Computing the moments of high dimensional solutions of the master equation , 2006, Appl. Math. Comput..

[44]  Johan Paulsson,et al.  Near-critical phenomena in intracellular metabolite pools. , 2003, Biophysical journal.

[45]  Per Lötstedt,et al.  Implicit Solution of Hyperbolic Equations with Space-Time Adaptivity , 2002 .

[46]  K. Burrage,et al.  A Krylov-based finite state projection algorithm for solving the chemical master equation arising in the discrete modelling of biological systems , 2006 .

[47]  Per Lötstedt,et al.  Dimensional Reduction of the Fokker-Planck Equation for Stochastic Chemical Reactions , 2006, Multiscale Model. Simul..