Wavelet analysis of refinement equations
暂无分享,去创建一个
[1] J. Peetre. New thoughts on Besov spaces , 1976 .
[2] Nira Dyn,et al. A 4-point interpolatory subdivision scheme for curve design , 1987, Comput. Aided Geom. Des..
[3] I. Daubechies. Orthonormal bases of compactly supported wavelets , 1988 .
[4] C. Micchelli,et al. Uniform refinement of curves , 1989 .
[5] Serge Dubuc,et al. Multidimensional Iterative Interpolation , 1991, Canadian Journal of Mathematics.
[6] C. Micchelli,et al. Stationary Subdivision , 1991 .
[7] Nira Dyn,et al. Analysis of uniform binary subdivision schemes for curve design , 1991 .
[8] A. Cohen,et al. Regularité des bases d'ondelettes et mesures ergodiques , 1992 .
[9] Björn Jawerth,et al. Geometrical dimension versus smoothness , 1992 .
[10] Martin Vetterli,et al. Wavelets and filter banks: theory and design , 1992, IEEE Trans. Signal Process..
[11] Christopher Heil,et al. The characterization of continuous, four-coefficient scaling functions and wavelets , 1992, IEEE Trans. Inf. Theory.
[12] O. Rioul. Simple regularity criteria for subdivision schemes , 1992 .
[13] T. Eirola. Sobolev characterization of solutions of dilation equations , 1992 .
[14] L. Villemoes. Energy moments in time and frequency for two-scale difference equation solutions and wavelets , 1992 .
[15] I. Daubechies,et al. Non-separable bidimensional wavelets bases. , 1993 .