X-ray phase contrast imaging of additive manufactured structures using a laser wakefield accelerator

X-rays generated by the betatron oscillations of electrons in a nonlinear plasma wakefield have been proposed to be useful for a range of applications. In this study, the scaling of the x-ray fluence and energy with electron beam properties and laser power are studied and the application of the x-rays for imaging additive manufactured (3D printed) test objects is investigated. The scalings confirm a strong increase in x-ray fluence with laser power and the imaging shows strong fringe contrast due to the micron scale source size.

[1]  M. Tzoufras,et al.  Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime , 2007 .

[2]  S. Wilkins,et al.  Phase-contrast imaging using polychromatic hard X-rays , 1996, Nature.

[3]  A. E. Dangor,et al.  Monoenergetic beams of relativistic electrons from intense laser–plasma interactions , 2004, Nature.

[4]  Zulfikar Najmudin,et al.  X-ray phase contrast imaging of biological specimens with femtosecond pulses of betatron radiation from a compact laser plasma wakefield accelerator , 2011 .

[5]  S. Kneip,et al.  A plasma wiggler beamline for 100 TW to 10 PW lasers , 2012 .

[6]  Henrik Westerberg,et al.  High-resolution μCT of a mouse embryo using a compact laser-driven X-ray betatron source , 2018, Proceedings of the National Academy of Sciences.

[7]  Antoine Rousse,et al.  Production of a keV x-ray beam from synchrotron radiation in relativistic laser-plasma interaction. , 2004, Physical review letters.

[8]  Lijun Song,et al.  Identification of phase transformation using optical emission spectroscopy for direct metal deposition process , 2012, LASE.

[9]  P Thibault,et al.  Quantitative X-ray phase-contrast microtomography from a compact laser-driven betatron source , 2014, Nature Communications.

[10]  J. Vieira,et al.  Beam loading in the nonlinear regime of plasma-based acceleration. , 2008, Physical review letters.

[11]  H M Milchberg,et al.  MeV electron acceleration at 1  kHz with <10  mJ laser pulses. , 2017, Optics letters.

[12]  A Pak,et al.  Angular dependence of betatron x-ray spectra from a laser-wakefield accelerator. , 2013, Physical review letters.

[13]  J. Cary,et al.  High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding , 2004, Nature.

[14]  B. L. Henke,et al.  X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50-30,000 eV, Z = 1-92 , 1993 .

[15]  E. Esarey,et al.  Synchrotron radiation from electron beams in plasma-focusing channels. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  V Malka,et al.  Controlled betatron x-ray radiation from tunable optically injected electrons. , 2011, Physical review letters.

[17]  Z. Najmudin,et al.  Characterization of transverse beam emittance of electrons from a laser-plasma wakefield accelerator in the bubble regime using betatron x-ray radiation , 2011, 1105.5559.

[18]  Zulfikar Najmudin,et al.  Bright spatially coherent synchrotron X-rays from a table-top source , 2010 .

[19]  S. Kiselev,et al.  Phenomenological theory of laser-plasma interaction in ``bubble'' regime , 2004 .

[20]  K. Krushelnick,et al.  High repetition-rate wakefield electron source generated by few-millijoule, 30 fs laser pulses on a density downramp , 2012, 1204.6414.

[21]  F. Albert,et al.  Applications of laser wakefield accelerator-based light sources , 2016 .

[22]  B. Pollock,et al.  Ultrafast Imaging of Laser Driven Shock Waves using Betatron X-rays from a Laser Wakefield Accelerator , 2018, Scientific Reports.

[23]  Eric Esarey,et al.  Low-emittance electron bunches from a laser-plasma accelerator measured using single-shot x-ray spectroscopy. , 2012 .

[24]  P. P. Rajeev,et al.  Gamma-rays from harmonically resonant betatron oscillations in a plasma wake , 2011 .

[25]  S. Wilkins,et al.  Contrast and resolution in imaging with a microfocus x-ray source , 1997 .

[26]  Y. Glinec,et al.  A laser–plasma accelerator producing monoenergetic electron beams , 2004, Nature.

[27]  S. Fourmaux,et al.  Demonstration of the synchrotron-type spectrum of laser-produced Betatron radiation , 2011, 1104.2243.

[28]  Kamel Fezzaa,et al.  Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction , 2017, Scientific Reports.

[29]  A. Jullien,et al.  Relativistic electron beams driven by kHz single-cycle light pulses , 2016, Nature Photonics.

[30]  A. Huebl,et al.  Demonstration of a beam loaded nanocoulomb-class laser wakefield accelerator , 2017, Nature Communications.

[31]  Michael Schnell,et al.  Deducing the electron-beam diameter in a laser-plasma accelerator using x-ray betatron radiation. , 2012, Physical review letters.

[32]  A. Rousse,et al.  Imaging Electron Trajectories in Laser Wakefield Cavity using betatron X-Ray Radiation , 2006, 2007 Conference on Lasers and Electro-Optics (CLEO).

[33]  S. Fourmaux,et al.  Effect of experimental laser imperfections on laser wakefield acceleration and betatron source , 2016, Scientific reports.

[34]  Z. Najmudin,et al.  Laser-wakefield accelerators as hard x-ray sources for 3D medical imaging of human bone , 2015, Scientific Reports.

[35]  V Malka,et al.  Single shot phase contrast imaging using laser-produced Betatron x-ray beams. , 2011, Optics letters.

[36]  Alexander Thomas,et al.  Scalings for radiation from plasma bubbles , 2010 .

[37]  U. Hampel,et al.  An ultra fast electron beam x-ray tomography scanner , 2008 .