A Fast and Environment-friendly Method for Preparing Nanopowders Mo through Electro- desulfidation of MoS2 in LiCl melt

[1]  Yusi Che,et al.  Study on the molybdenum electro-extraction from MoS2 in the molten salt , 2021 .

[2]  R. Suzuki,et al.  A Sustainable Approach for Producing Ti and TiS2 from TiC , 2020, Metallurgical and Materials Transactions B.

[3]  T. Okabe,et al.  Recent Progress in Titanium Extraction and Recycling , 2020, Metallurgical and Materials Transactions B.

[4]  R. Suzuki,et al.  An Innovative Process for Production of Ti Metal Powder via TiSx from TiN , 2019, Metallurgical and Materials Transactions B.

[5]  Mingsheng Tan,et al.  High-Efficiency Preparation of Titanium through Electrolysis of Carbo-Sulfurized Titanium Dioxide , 2019, ACS Sustainable Chemistry & Engineering.

[6]  Mingsheng Tan,et al.  Preparation of Mo nanopowders through electroreduction of solid MoS2 in molten KCl-NaCl. , 2014, Physical chemistry chemical physics : PCCP.

[7]  D. Fray,et al.  DC voltammetry of electro-deoxidation of solid oxides. , 2013, Chemical reviews.

[8]  Haiping Gao,et al.  Electrolysis of solid metal sulfide to metal and sulfur in molten NaCl–KCl , 2011 .

[9]  Xionggang Lu,et al.  Direct selective extraction of titanium silicide Ti5Si3 from multi-component Ti-bearing compounds in molten salt by an electrochemical process , 2011 .

[10]  S. Jiao,et al.  Production of NiTi shape memory alloys via electro-deoxidation utilizing an inert anode , 2010 .

[11]  S. Seetharaman,et al.  Copper extraction from copper ore by electro-reduction in molten CaCl2-NaCl , 2009 .

[12]  G. Chen,et al.  Electrolysis of solid MoS2 in molten CaCl2 for Mo extraction without CO2 emission , 2007 .

[13]  G. Chen,et al.  Electrochemically driven three-phase interlines into insulator compounds: electroreduction of solid SiO2 in molten CaCl2. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[14]  G. Chen,et al.  Electrochemistry at conductor/insulator/electrolyte three-phase interlines: A thin layer model. , 2005, The journal of physical chemistry. B.

[15]  G. Chen,et al.  A quartz sealed Ag/AgCl reference electrode for CaCl2 based molten salts , 2005 .

[16]  Myer Kutz Handbook of Materials Selection , 2002 .

[17]  E. Wachtel,et al.  Alkali metal intercalated fullerene-like MS(2) (M = W, Mo) nanoparticles and their properties. , 2002, Journal of the American Chemical Society.

[18]  Derek J. Fray,et al.  Emerging molten salt technologies for metals production , 2001 .

[19]  Derek J. Fray,et al.  Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride , 2000, Nature.

[20]  C. L. Lloyd,et al.  Anodic Oxidation of Sulfide Ions in Molten Lithium Fluoride , 1994 .

[21]  Ram A. Sharma,et al.  Solubility of Li2 S in LiCl ‐ KCl Melts , 1988 .

[22]  N. Yao,et al.  The Anodic Reaction of Sulfide Ions at Graphite Electrodes in Molten Cryolite , 1984 .

[23]  N. Yao,et al.  Voltammetric Study of the Anodic Oxidation of Sulfide Ions in Molten Fluorides , 1983 .

[24]  N. Yao,et al.  The electrolysis of Al2S3 in AlCl3-MgCl2-NaCl-KCl melts , 1982 .

[25]  M. Saboungi,et al.  Solubility Products of Metal Sulfides in Molten Salts Measurements and Calculations for Iron Sulfide in the Eutectic Composition , 1978 .

[26]  J. A. Plambeck,et al.  Electrochemical Behavior of Sulfide in Fused LiCl ‐ KCl Eutectic , 1969 .

[27]  W. 0. Winer Molybdenum disulfide as a lubricant: A review of the fundamental knowledge , 1967 .

[28]  G. L. Gardner,et al.  Molten salts: Volume 4, part 2, chlorides and mixtures—electrical conductance, density, viscosity, and surface tension data , 1974 .

[29]  A. S.,et al.  Lehrbuch der Anorganischen Chemie , 1900, Nature.