On the challenge of developing advanced technologies for electrochemical energy storage and conversion

The accelerated production of sophisticated miniaturized mobile electronic devices, challenges such as the electrochemical propulsion of electric vehicles (EVs), and the need for large-scale storage of sustainable energy (i.e. load-levelling applications) motivate and stimulate the development of novel rechargeable batteries and super-capacitors. While batteries deliver high energy density but limited cycle life and power density, super-capacitors provide high power density and very prolonged cycling. Lithium-ion batteries are the focus of intensive R&D efforts because they promise very high energy density that may be suitable for electrical propulsion. Here, we review research on batteries with an emphasis on Li-ion battery technology, examining its suitability for EV applications. We also briefly examine other battery systems that may be of importance for load-levelling applications, including rechargeable magnesium batteries. We give a short review of the status of technologies beyond Li-ion batteries, including Li–sulfur and Li–oxygen systems. Finally, we briefly discuss recent progress in the R&D of advanced super-capacitors.

[1]  L. Carrette,et al.  Fuel Cells - Fundamentals and Applications , 2001 .

[2]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[3]  C. Liang,et al.  Hierarchically Structured Sulfur/Carbon Nanocomposite Material for High-Energy Lithium Battery , 2009 .

[4]  D. Linden Handbook Of Batteries , 2001 .

[5]  Guangyuan Zheng,et al.  Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries , 2013, Nature Communications.

[6]  Gregory A. Roberts,et al.  Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[7]  Jean-Marie Tarascon,et al.  From biomass to a renewable LixC6O6 organic electrode for sustainable Li-ion batteries. , 2008, ChemSusChem.

[8]  Philipp Adelhelm,et al.  A rechargeable room-temperature sodium superoxide (NaO2) battery. , 2013, Nature materials.

[9]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[10]  N. Imanishi,et al.  Synthesis of garnet-type Li7 − xLa3Zr2O12 − 1/2x and its stability in aqueous solutions , 2011 .

[11]  Jeffrey W. Fergus,et al.  Recent developments in cathode materials for lithium ion batteries , 2010 .

[12]  D. Aurbach,et al.  Composite carbon nanotube/carbon electrodes for electrical double-layer super capacitors. , 2012, Angewandte Chemie.

[13]  Daniel Guay,et al.  Carbon/PbO2 asymmetric electrochemical capacitor based on methanesulfonic acid electrolyte , 2011 .

[14]  M. Armand,et al.  Building better batteries , 2008, Nature.

[15]  G. Pistoia,et al.  Lithium batteries : science and technology , 2003 .

[16]  Wei-Jun Zhang A review of the electrochemical performance of alloy anodes for lithium-ion batteries , 2011 .

[17]  Doron Aurbach,et al.  Rechargeable lithiated silicon–sulfur (SLS) battery prototypes , 2012 .

[18]  Ilias Belharouak,et al.  High-energy cathode material for long-life and safe lithium batteries. , 2009, Nature materials.

[19]  L. Nazar,et al.  A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. , 2009, Nature materials.

[20]  Hubert A. Gasteiger,et al.  or Future Reality ? − − Just a Dream , 2013 .

[21]  N. Oyama,et al.  New organodisulfide—polyaniline composite cathode for secondary lithium battery , 1992 .

[22]  Jasim Ahmed,et al.  A Critical Review of Li/Air Batteries , 2011 .

[23]  Wu Xu,et al.  Optimization of Air Electrode for Li/Air Batteries , 2010 .

[24]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[25]  Reuel Shinnar,et al.  Solar thermal energy: The forgotten energy source , 2007 .

[26]  Jae-Hun Kim,et al.  Li-alloy based anode materials for Li secondary batteries. , 2010, Chemical Society reviews.

[27]  John B. Goodenough,et al.  Cathode materials: A personal perspective , 2007 .

[28]  J. Dahn,et al.  Synthesis and Electrochemistry of LiNi x Mn2 − x O 4 , 1997 .

[29]  Doron Aurbach,et al.  Failure and Stabilization Mechanisms of Graphite Electrodes , 1997 .

[30]  Doron Aurbach,et al.  On the Electrochemical Behavior of Aluminum Electrodes in Nonaqueous Electrolyte Solutions of Lithium Salts , 2010 .

[31]  Shao Hua Yang,et al.  Design and analysis of aluminum/air battery system for electric vehicles , 2002 .

[32]  Emanuel Peled,et al.  The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model , 1979 .

[33]  Doron Aurbach,et al.  The Effect of ZnO and MgO Coatings by a Sono-Chemical Method, on the Stability of LiMn1.5Ni0.5O4 as a Cathode Material for 5 V Li-Ion Batteries , 2012 .

[34]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[35]  A. Züttel,et al.  Hydrogen-storage materials for mobile applications , 2001, Nature.

[36]  Doron Aurbach,et al.  An Advanced Lithium Ion Battery Based on Amorphous Silicon Film Anode and Integrated xLi2MnO3.(1-x)LiNiyMnzCo1-y-zO2 Cathode , 2013 .

[37]  Doron Aurbach,et al.  Synthesis of Integrated Cathode Materials xLi2MnO3⋅ ( 1 − x ) LiMn1 / 3Ni1 / 3Co1 / 3O2 ( x = 0.3 , 0.5 , 0.7 ) and Studies of Their Electrochemical Behavior , 2010 .

[38]  Vincent Gariépy,et al.  An improved high-power battery with increased thermal operating range: C–LiFePO4//C–Li4Ti5O12 , 2012 .

[39]  Taku Oshima,et al.  Development of Sodium‐Sulfur Batteries , 2005 .

[40]  Rudolf Holze,et al.  An Aqueous Rechargeable Lithium Battery Using Coated Li Metal as Anode , 2013, Scientific Reports.

[41]  Osamu Kobayashi,et al.  Mass production cost of PEM fuel cell by learning curve , 2004 .

[42]  Simona Onori,et al.  Analysis of energy management strategies in plug-in hybrid electric vehicles: Application to the GM Chevrolet Volt , 2013, 2013 American Control Conference.

[43]  D. Aurbach,et al.  The Study of Activated Carbon/CNT/MoO3 Electrodes for Aqueous Pseudo-Capacitors , 2013 .

[44]  Shigeyuki Iwasa,et al.  Organic radical battery: nitroxide polymers as a cathode-active material , 2004 .

[45]  Linda F. Nazar,et al.  Review on electrode–electrolyte solution interactions, related to cathode materials for Li-ion batteries , 2007 .

[46]  Wako Naoi,et al.  Second generation ‘nanohybrid supercapacitor’: Evolution of capacitive energy storage devices , 2012 .

[47]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[48]  E. Levi,et al.  Prototype systems for rechargeable magnesium batteries , 2000, Nature.

[49]  Doron Aurbach,et al.  The electrochemical behavior of selected polar aprotic systems , 1989 .

[50]  K. M. Abraham,et al.  A Lithium/Dissolved Sulfur Battery with an Organic Electrolyte , 1979 .

[51]  Glenn G. Amatucci,et al.  Fluoride based electrode materials for advanced energy storage devices , 2007 .

[52]  M. Armand,et al.  Conjugated dicarboxylate anodes for Li-ion batteries. , 2009, Nature materials.

[53]  Jan C. Hummelen,et al.  Modern plastic solar cells : materials, mechanisms and modeling , 2013 .

[54]  Colin Vincent,et al.  Modern Batteries , 1984 .

[55]  Maria Skyllas-Kazacos,et al.  Progress in Flow Battery Research and Development , 2011 .

[56]  Tao Zheng,et al.  Mechanisms for Lithium Insertion in Carbonaceous Materials , 1995, Science.

[57]  Ryohei Mori A new structured aluminium–air secondary battery with a ceramic aluminium ion conductor , 2013 .

[58]  Emanuel Peled,et al.  Electrochemistry of a nonaqueous lithium/sulfur cell , 1983 .

[59]  D. Aurbach,et al.  Electrochemical and spectroscopic studies of carbon electrodes in lithium battery electrolyte systems , 1993 .

[60]  D. Aurbach,et al.  The Correlation Between the Surface Chemistry and the Performance of Li‐Carbon Intercalation Anodes for Rechargeable ‘Rocking‐Chair’ Type Batteries , 1994 .

[61]  Stefan A Freunberger,et al.  The carbon electrode in nonaqueous Li-O2 cells. , 2013, Journal of the American Chemical Society.

[62]  Ann Marie Sastry,et al.  A review of conduction phenomena in Li-ion batteries , 2010 .

[63]  Daniel Sharon,et al.  On the Challenge of Electrolyte Solutions for Li-Air Batteries: Monitoring Oxygen Reduction and Related Reactions in Polyether Solutions by Spectroscopy and EQCM. , 2013, The journal of physical chemistry letters.

[64]  D. Aurbach,et al.  Hierarchical activated carbon microfiber (ACM) electrodes for rechargeable Li–O2 batteries , 2013 .

[65]  Ronald A. Guidotti,et al.  Thermally activated ("thermal") battery technology Part I: An overview , 2006 .

[66]  Yair Ein-Eli,et al.  Review on Liair batteriesOpportunities, limitations and perspective , 2011 .

[67]  Bruno Scrosati,et al.  A contribution to the progress of high energy batteries: A metal-free, lithium-ion, silicon-sulfur battery , 2012 .

[68]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[69]  Thomas H. Bradley,et al.  Design, demonstrations and sustainability impact assessments for plug-in hybrid electric vehicles , 2009 .

[70]  D. Aurbach,et al.  The study of the anodic stability of alkyl carbonate solutions by in situ FTIR spectroscopy, EQCM, NMR and MS , 2001 .

[71]  Doron Aurbach,et al.  On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li–Sulfur Batteries , 2009 .

[72]  Kazunori Ozawa,et al.  Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system , 1994 .

[73]  D. Aurbach,et al.  Towards promising electrochemical technology for load leveling applications: extending cycle life of lead acid batteries by the use of carbon nano-tubes (CNTs) , 2013 .

[74]  Doron Aurbach,et al.  Amorphous Columnar Silicon Anodes for Advanced High Voltage Lithium Ion Full Cells: Dominant Factors Governing Cycling Performance , 2013 .

[75]  Guosong Hong,et al.  Advanced zinc-air batteries based on high-performance hybrid electrocatalysts , 2013, Nature Communications.

[76]  Petr Novák,et al.  Hybridization of electrochemical capacitors and rechargeable batteries: An experimental analysis of , 2011 .

[77]  A. Kirubakaran,et al.  A review on fuel cell technologies and power electronic interface , 2009 .

[78]  Doron Aurbach,et al.  Mg rechargeable batteries: an on-going challenge , 2013 .

[79]  Doron Aurbach,et al.  Electrolyte solution for the improved cycling performance of LiCoPO4/C composite cathodes , 2013 .

[80]  Zhonghua Lu,et al.  Synthesis, Structure, and Electrochemical Behavior of Li [ Ni x Li1 / 3 − 2x / 3Mn2 / 3 − x / 3 ] O 2 , 2002 .

[81]  S. Wooding,et al.  Bringing the electric vehicle to the mass market , 2012 .

[82]  Sun Tai Kim,et al.  Metal–Air Batteries with High Energy Density: Li–Air versus Zn–Air , 2010 .

[83]  Stanford R. Ovshinsky,et al.  Recent advances in NiMH battery technology , 2007 .

[84]  Doron Aurbach,et al.  Sulfur‐Impregnated Activated Carbon Fiber Cloth as a Binder‐Free Cathode for Rechargeable Li‐S Batteries , 2011, Advanced materials.

[85]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[86]  Jeff Dahn,et al.  Structure and electrochemistry of the spinel oxides LiTi2O4 and Li43Ti53O4 , 1989 .

[87]  Hun‐Gi Jung,et al.  An Advanced Lithium‐Sulfur Battery , 2013 .

[88]  Diana Golodnitsky,et al.  Parameter analysis of a practical lithium- and sodium-air electric vehicle battery , 2011 .

[89]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[90]  Doron Aurbach,et al.  LiMn0.8Fe0.2PO4/Li4Ti5O12, a Possible Li-Ion Battery System for Load-Leveling Application , 2013 .

[91]  Jingguang G. Chen,et al.  Nanostructured electrodes for high-performance pseudocapacitors. , 2013, Angewandte Chemie.

[92]  T. Ishihara,et al.  Fe–air rechargeable battery using oxide ion conducting electrolyte of Y2O3 stabilized ZrO2 , 2013 .