Robust Video Transmission Over Wireless LANs

Home wireless networks are mainly used for data transmission; however, they are now being used in video delivery applications, such as video on demand or wireless internet protocol (IP) television. Off-the-shelf technologies are inappropriate for the delivery of real-time video. In this paper, a packetization method is presented for robust H.264 video transmission over the IEEE 802.11 wireless local area network (WLAN) configured as a wireless home network. To overcome the poor throughput efficiency of the IEEE 802.11 Medium Access Control (MAC), an aggregation scheme with a recovery mechanism is deployed and evaluated via simulation. The scheme maps several IP packets (each containing a single H.264 video packet called a Network Abstraction Layer (NAL) unit) into a single larger MAC frame. Video robustness is enhanced by using small NAL units and by retrieving possible error-free IP packets from the received MAC frame. The required modifications to the legacy MAC are described. Results in terms of throughput efficiency and peak-signal-to-noise ratio (PSNR) are presented for the case of broadcast and real-time transmission applications. Compared to the legacy case, an 80% improvement in throughput efficiency is achieved for a similar PSNR video performance. For fixed physical layer resources, our system provides a 2.5-dB gain in video performance over the legacy case for a similar throughput efficiency. The proposed solution provides considerable robustness enhancement for video transmission over IEEE 802.11-based WLANs.

[1]  Andrew R Nix,et al.  A comparison of the HIPERLAN/2 and IEEE 802.11a wireless LAN standards , 2002, IEEE Commun. Mag..

[2]  Sunghyun Choi,et al.  IEEE 802.11e MAC-level FEC performance evaluation and enhancement , 2002, Global Telecommunications Conference, 2002. GLOBECOM '02. IEEE.

[3]  Angela Doufexi,et al.  Packetisation Strategies for Enhanced Video Transmission over Wireless LANs , 2004 .

[4]  Yang Xiao,et al.  IEEE 802.11n: enhancements for higher throughput in wireless LANs , 2005, IEEE Wirel. Commun..

[5]  Miska M. Hannuksela,et al.  H.26L/JVT coding network abstraction layer and IP-based transport , 2002, Proceedings. International Conference on Image Processing.

[6]  Stephan Wenger,et al.  H.264/AVC over IP , 2003, IEEE Trans. Circuits Syst. Video Technol..

[7]  Wang Hui A comparison of the HIPERLAN/2 and IEEE802.11a wireless LAN standards , 2004 .

[8]  Sunghyun Choi,et al.  Analysis of IEEE 802.11e for QoS support in wireless LANs , 2003, IEEE Wireless Communications.

[9]  Kang G. Shin,et al.  Goodput Analysis and Link Adaptation for IEEE 802.11a Wireless LANs , 2002, IEEE Trans. Mob. Comput..

[10]  A. Girotra,et al.  Performance Analysis of the IEEE 802 . 11 Distributed Coordination Function , 2005 .

[11]  Miska M. Hannuksela,et al.  The error concealment feature in the H.26L test model , 2002, Proceedings. International Conference on Image Processing.

[12]  Henning Schulzrinne,et al.  RTP: A Transport Protocol for Real-Time Applications , 1996, RFC.

[13]  H. Schwarz,et al.  The emerging H.264/AVC standard , 1998 .

[14]  David R. Bull,et al.  Loss resilient H.263+video over the Internet , 2001, Signal Process. Image Commun..

[15]  Itu-T and Iso Iec Jtc Advanced video coding for generic audiovisual services , 2010 .

[16]  A. M. Abdullah,et al.  Wireless lan medium access control (mac) and physical layer (phy) specifications , 1997 .

[17]  Mihaela van der Schaar,et al.  Adaptive error control for fine-granular-scalability video coding over IEEE 802.11 wireless LANs , 2003, 2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698).

[18]  Miska M. Hannuksela,et al.  H.264/AVC in wireless environments , 2003, IEEE Trans. Circuits Syst. Video Technol..

[19]  Yang Xiao,et al.  IEEE 802.11n: enhancements for higher throughput in wireless LANs , 2005, IEEE Wireless Communications.

[20]  J. del Prado Pavon,et al.  Impact of frame size, number of stations and mobility on the throughput performance of IEEE 802.11e , 2004, 2004 IEEE Wireless Communications and Networking Conference (IEEE Cat. No.04TH8733).

[21]  Yang Xiao,et al.  Concatenation and piggyback mechanisms for the IEEE 802.11 MAC , 2004, 2004 IEEE Wireless Communications and Networking Conference (IEEE Cat. No.04TH8733).

[22]  David R. Bull,et al.  Throughput analysis of IEEE 802.11 and IEEE 802.11e MAC , 2004, 2004 IEEE Wireless Communications and Networking Conference (IEEE Cat. No.04TH8733).

[23]  David Bull,et al.  A study of the performance of HIPERLAN/2 and IEEE 802.11a physical layers , 2001, IEEE VTS 53rd Vehicular Technology Conference, Spring 2001. Proceedings (Cat. No.01CH37202).

[24]  Tho Le-Ngoc,et al.  Syntax based error concealment , 2001, Signal Process. Image Commun..

[25]  Gary J. Sullivan,et al.  Rate-constrained coder control and comparison of video coding standards , 2003, IEEE Trans. Circuits Syst. Video Technol..

[26]  Ajay Luthra,et al.  Overview of the H.264/AVC video coding standard , 2003, IEEE Trans. Circuits Syst. Video Technol..

[27]  Matthias Schr,et al.  IEEE 802 . 11 or ETSI BRAN HIPERLAN / 2 : Who will win the race for a high speed wireless LAN standard ? , 1999 .