Local linear multi-SVM method for gene function classification

This paper proposes a local linear multi-SVM method based on composite kernel for solving classification tasks in gene function prediction. The proposed method realizes a nonlinear separating boundary by estimating a series of piecewise linear boundaries. Firstly, according to the distribution information of training data, a guided partitioning approach composed of separating boundary detection and clustering technique is used to obtain local subsets, and each subset is utilized to capture prior knowledge of corresponding local linear boundary. Secondly, a composite kernel is introduced to realize the local linear multi-SVM model. Instead of building multiple local SVM models separately, the prior knowledge of local subsets is used to construct a composite kernel, then the local linear multi-SVM model is realized by using the composite kernel exactly in the same way as a single SVM model. Experimental results on benchmark datasets demonstrate that the proposed method improves the classification performance efficiently.