Image Manipulation Using M-filters in a Pyramidal Computer Model

This paper presents how morphological transformations can be related to representations of a set on different lattices. A hierarchical definition of structuring element conveys to a class of multigrid transformations /spl Psi//sub k/ that handle changes on discrete representations of regions. The transformations correspond to upward and downward processes in a hierarchical structure. Based on multigrid transformations, a method to delineate not-perfectly-isolated objects in an nxn image requiring O(log n) time is presented. The approach considers grey level regions as sets and processes through a pyramid to carry out geometric manipulations. Extending the concept of boundary to cope with hierarchical representations of a set, a second method which identifies the boundaries in an image is discussed. >

[1]  G. Grätzer General Lattice Theory , 1978 .

[2]  Azriel Rosenfeld,et al.  Compact Region Extraction Using Weighted Pixel Linking in a Pyramid , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  M.-H. Chen,et al.  A Multiscanning Approach Based on Morphological Filtering , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  J. Serra Introduction to mathematical morphology , 1986 .

[5]  Josef Kittler,et al.  A hierarchical approach to line extraction , 1989, Proceedings CVPR '89: IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[6]  Henk J. A. M. Heijmans,et al.  Theoretical Aspects of Gray-Level Morphology , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Xinhua Zhuang,et al.  Image Analysis Using Mathematical Morphology , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Michael Shneier,et al.  Extracting Compact Objects Using Linked Pyramids , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Edward H. Adelson,et al.  The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..

[10]  Azriel Rosenfeld,et al.  Multiresolution object detection and delineation , 1987 .

[11]  Xinhua Zhuang,et al.  Morphological structuring element decomposition , 1986 .

[12]  Christian Ronse,et al.  Why mathematical morphology needs complete lattices , 1990, Signal Process..

[13]  Petros Maragos,et al.  Morphological filters-Part II: Their relations to median, order-statistic, and stack filters , 1987, IEEE Trans. Acoust. Speech Signal Process..

[14]  Ramesh C. Jain,et al.  A Pyramid-Based Approach to Segmentation Applied to Region Matching , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  H. Heijmans,et al.  The algebraic basis of mathematical morphology , 1988 .

[16]  Aldo W. Morales,et al.  Nonlinear multiscale filtering using mathematical morphology , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[17]  Fernand Meyer Automatic screening of cytological specimens , 1986 .

[18]  Ming-Kuei Hu,et al.  Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.

[19]  S. Lockett,et al.  Quantitative precision of an automated, fluorescence-based image cytometer. , 1992, Analytical and quantitative cytology and histology.

[20]  Petros Maragos,et al.  Morphological filters-Part I: Their set-theoretic analysis and relations to linear shift-invariant filters , 1987, IEEE Trans. Acoust. Speech Signal Process..

[21]  Harvard Univer A Representation Theory for Morphological Image and Signal Processing , 1989 .

[22]  Stanley R Sternberg,et al.  Grayscale morphology , 1986 .

[23]  Alexander Toet A hierarchical morphological image decomposition , 1990, Pattern Recognit. Lett..

[24]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .