Extended superconformal algebras and free field realizations from Hamiltonian reduction
暂无分享,去创建一个
[1] E. Marinari,et al. String Theory, Quantum Gravity and the Unification of the Fundamental Interactions , 1993 .
[2] W. Troost,et al. Extensions of the Virasoro algebra and gauged WZW models , 1993, hep-th/9306033.
[3] K. Thielemans,et al. Induced and effective gravity theories in D = 2 , 1993, Nuclear Physics B.
[4] J. L. Petersen,et al. Free Field Representations of Extended Superconformal Algebras , 1992, hep-th/9207009.
[5] J. L. Petersen,et al. Free-field representations and screening operators for the N = 4 doubly extended superconformal algebras , 1992, hep-th/9207010.
[6] P. Bowcock. Exceptional superconformal algebras , 1992, hep-th/9202061.
[7] K. Ito,et al. Hamiltonian Reduction and Classical Extended Superconformal Algebras , 1992, hep-th/9202058.
[8] S. Matsuda. Coulomb gas representations and screening operators of the N=4 superconformal algebras , 1992, hep-th/9201008.
[9] Kris Thielemans,et al. A Mathematica package for computing operator product expansions , 1991 .
[10] K. Ito,et al. Feigin-Fuchs representations of arbitrary affine Lie algebras , 1991 .
[11] K. Miki. THE REPRESENTATION THEORY OF THE SO(3) INVARIANT SUPERCONFORMAL ALGEBRA , 1990 .
[12] A. Wipf,et al. Toda Theory and W-Algebra from a Gauged WZNW Point of View , 1990 .
[13] A. Alekseev,et al. Path integral quantization of the coadjoint orbits of the virasoro group and 2-d gravity , 1989 .
[14] M. Wakimoto. Fock representations of the affine Lie algebraA1(1) , 1986 .
[15] M. Bershadsky. Superconformal algebras in two dimensions with arbitrary N , 1986 .
[16] V. G. Knizhnik. Superconformal algebras in two dimensions , 1986 .
[17] V. V. Sokolov,et al. Lie algebras and equations of Korteweg-de Vries type , 1985 .
[18] D. Bernard,et al. Fock representations and BRST cohomology inSL(2) current algebra , 1990 .
[19] H. Ooguri,et al. HeiddenSL(n) symmetry in conformal field theories , 1989 .
[20] T. Kugo,et al. Quantum String Theory , 1988 .