A case study in programming a quantum annealer for hard operational planning problems

We report on a case study in programming an early quantum annealer to attack optimization problems related to operational planning. While a number of studies have looked at the performance of quantum annealers on problems native to their architecture, and others have examined performance of select problems stemming from an application area, ours is one of the first studies of a quantum annealer’s performance on parametrized families of hard problems from a practical domain. We explore two different general mappings of planning problems to quadratic unconstrained binary optimization (QUBO) problems, and apply them to two parametrized families of planning problems, navigation-type and scheduling-type. We also examine two more compact, but problem-type specific, mappings to QUBO, one for the navigation-type planning problems and one for the scheduling-type planning problems. We study embedding properties and parameter setting and examine their effect on the efficiency with which the quantum annealer solves these problems. From these results, we derive insights useful for the programming and design of future quantum annealers: problem choice, the mapping used, the properties of the embedding, and the annealing profile all matter, each significantly affecting the performance.

[1]  Umesh Vazirani,et al.  Comment on "Distinguishing Classical and Quantum Models for the D-Wave Device" , 2014, 1404.6499.

[2]  Amin Coja-Oghlan,et al.  Chasing the K-Colorability Threshold , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[3]  Vicky Choi,et al.  Minor-embedding in adiabatic quantum computation: II. Minor-universal graph design , 2010, Quantum Inf. Process..

[4]  Abdullah Khalid,et al.  A Gentle Introduction to Quantum Computing , 2012 .

[5]  Aidan Roy,et al.  A practical heuristic for finding graph minors , 2014, ArXiv.

[6]  B. Chakrabarti,et al.  Colloquium : Quantum annealing and analog quantum computation , 2008, 0801.2193.

[7]  Vicky Choi,et al.  Minor-embedding in adiabatic quantum computation: I. The parameter setting problem , 2008, Quantum Inf. Process..

[8]  G. Rose,et al.  Finding low-energy conformations of lattice protein models by quantum annealing , 2012, Scientific Reports.

[9]  J. Whitfield,et al.  Simulating chemistry using quantum computers. , 2010, Annual review of physical chemistry.

[10]  Alán Aspuru-Guzik,et al.  Adiabatic Quantum Simulation of Quantum Chemistry , 2013, Scientific Reports.

[11]  Maria Fox,et al.  PDDL2.1: An Extension to PDDL for Expressing Temporal Planning Domains , 2003, J. Artif. Intell. Res..

[12]  Daniel A. Lidar,et al.  Experimental signature of programmable quantum annealing , 2012, Nature Communications.

[13]  J. Smolin,et al.  Classical signature of quantum annealing , 2013, Front. Phys..

[14]  Amin Coja-Oghlan,et al.  Upper-Bounding the k-Colorability Threshold by Counting Covers , 2013, Electron. J. Comb..

[15]  Jörg Hoffmann,et al.  Local Search Topology in Planning Benchmarks: An Empirical Analysis , 2001, IJCAI.

[16]  Rupak Biswas,et al.  A Quantum Approach to Diagnosis of Multiple Faults in Electrical Power Systems , 2014, 2014 IEEE International Conference on Space Mission Challenges for Information Technology.

[17]  Daniel A. Lidar,et al.  Comment on: "Classical signature of quantum annealing" , 2013, 1305.5837.

[18]  Andrew Lucas,et al.  Ising formulations of many NP problems , 2013, Front. Physics.

[19]  M. W. Johnson,et al.  Quantum annealing with manufactured spins , 2011, Nature.

[20]  Ryan Babbush,et al.  Construction of Energy Functions for Lattice Heteropolymer Models: Efficient Encodings for Constraint Satisfaction Programming and Quantum Annealing , 2012 .

[21]  A. Beacham Hiding Our Colors , 1995 .

[22]  Daniel A. Lidar,et al.  Evidence for quantum annealing with more than one hundred qubits , 2013, Nature Physics.

[23]  Daniel A. Lidar,et al.  Defining and detecting quantum speedup , 2014, Science.

[24]  Christoph Lenzen,et al.  A generalized timeline representation, services, and interface for automating space mission operations , 2012, SpaceOps 2012 Conference.

[25]  Jj Org Hoomann Where Ignoring Delete Lists Works: Local Search Topology in Planning Benchmarks , 2003 .

[26]  Travis S. Humble,et al.  Adiabatic quantum programming: minor embedding with hard faults , 2012, Quantum Information Processing.

[27]  Malte Helmert,et al.  Complexity results for standard benchmark domains in planning , 2003, Artif. Intell..

[28]  Daniel A. Lidar,et al.  Benchmarking the D-Wave adiabatic quantum optimizer via 2D-Ising spin glasses , 2013 .

[29]  Endre Boros,et al.  Pseudo-Boolean optimization , 2002, Discret. Appl. Math..

[30]  U. Vazirani,et al.  How "Quantum" is the D-Wave Machine? , 2014, 1401.7087.

[31]  Cristopher Moore,et al.  Almost all graphs with average degree 4 are 3-colorable , 2002, STOC '02.

[32]  Peter C. Cheeseman,et al.  Where the Really Hard Problems Are , 1991, IJCAI.

[33]  O. Dubois,et al.  On the non-3-colourability of random graphs , 2002 .

[34]  Alán Aspuru-Guzik,et al.  Bayesian network structure learning using quantum annealing , 2014, The European Physical Journal Special Topics.

[35]  S. Knysh,et al.  Quantum Optimization of Fully-Connected Spin Glasses , 2014, 1406.7553.

[36]  Daniel A. Lidar,et al.  Experimental Signature of Programmable Quantum Annealing (Author's Manuscript) , 2013 .

[37]  D. Achlioptas,et al.  A sharp threshold for k-colorability , 1999 .

[38]  E. Rieffel,et al.  Quantum Computing: A Gentle Introduction , 2011 .

[39]  János Komlós,et al.  Limit distribution for the existence of hamiltonian cycles in a random graph , 1983, Discret. Math..

[40]  Daniel A. Lidar,et al.  Probing for quantum speedup on D-Wave Two , 2014 .

[41]  Alán Aspuru-Guzik,et al.  Resource efficient gadgets for compiling adiabatic quantum optimization problems , 2013, 1307.8041.

[42]  Paolo Traverso,et al.  Automated planning - theory and practice , 2004 .

[43]  Jeremy Frank,et al.  Parametrized Families of Hard Planning Problems from Phase Transitions , 2014, AAAI.

[44]  Colin P. Williams,et al.  A Near-Term Quantum Computing Approach for Hard Computational Problems in Space Exploration , 2012, 1204.2821.

[45]  Daniel A. Lidar,et al.  Error-corrected quantum annealing with hundreds of qubits , 2013, Nature Communications.

[46]  Paolo Traverso,et al.  Automated Planning: Theory & Practice , 2004 .

[47]  M. Fox,et al.  The 3rd International Planning Competition: Results and Analysis , 2003, J. Artif. Intell. Res..

[48]  M. Sipser,et al.  Quantum Computation by Adiabatic Evolution , 2000, quant-ph/0001106.

[49]  Richard Fikes,et al.  STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving , 1971, IJCAI.

[50]  Avrim Blum,et al.  Fast Planning Through Planning Graph Analysis , 1995, IJCAI.

[51]  Daniel A. Lidar,et al.  Performance of quantum annealing on random Ising problems implemented using the D-Wave Two , 2014 .

[52]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .