A case study in programming a quantum annealer for hard operational planning problems
暂无分享,去创建一个
Bryan O'Gorman | Eleanor G. Rieffel | Davide Venturelli | Vadim Smelyanskiy | Minh Do | Elicia M. Prystay | M. Do | E. Rieffel | V. Smelyanskiy | D. Venturelli | B. O’Gorman | E. Prystay
[1] Umesh Vazirani,et al. Comment on "Distinguishing Classical and Quantum Models for the D-Wave Device" , 2014, 1404.6499.
[2] Amin Coja-Oghlan,et al. Chasing the K-Colorability Threshold , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.
[3] Vicky Choi,et al. Minor-embedding in adiabatic quantum computation: II. Minor-universal graph design , 2010, Quantum Inf. Process..
[4] Abdullah Khalid,et al. A Gentle Introduction to Quantum Computing , 2012 .
[5] Aidan Roy,et al. A practical heuristic for finding graph minors , 2014, ArXiv.
[6] B. Chakrabarti,et al. Colloquium : Quantum annealing and analog quantum computation , 2008, 0801.2193.
[7] Vicky Choi,et al. Minor-embedding in adiabatic quantum computation: I. The parameter setting problem , 2008, Quantum Inf. Process..
[8] G. Rose,et al. Finding low-energy conformations of lattice protein models by quantum annealing , 2012, Scientific Reports.
[9] J. Whitfield,et al. Simulating chemistry using quantum computers. , 2010, Annual review of physical chemistry.
[10] Alán Aspuru-Guzik,et al. Adiabatic Quantum Simulation of Quantum Chemistry , 2013, Scientific Reports.
[11] Maria Fox,et al. PDDL2.1: An Extension to PDDL for Expressing Temporal Planning Domains , 2003, J. Artif. Intell. Res..
[12] Daniel A. Lidar,et al. Experimental signature of programmable quantum annealing , 2012, Nature Communications.
[13] J. Smolin,et al. Classical signature of quantum annealing , 2013, Front. Phys..
[14] Amin Coja-Oghlan,et al. Upper-Bounding the k-Colorability Threshold by Counting Covers , 2013, Electron. J. Comb..
[15] Jörg Hoffmann,et al. Local Search Topology in Planning Benchmarks: An Empirical Analysis , 2001, IJCAI.
[16] Rupak Biswas,et al. A Quantum Approach to Diagnosis of Multiple Faults in Electrical Power Systems , 2014, 2014 IEEE International Conference on Space Mission Challenges for Information Technology.
[17] Daniel A. Lidar,et al. Comment on: "Classical signature of quantum annealing" , 2013, 1305.5837.
[18] Andrew Lucas,et al. Ising formulations of many NP problems , 2013, Front. Physics.
[19] M. W. Johnson,et al. Quantum annealing with manufactured spins , 2011, Nature.
[20] Ryan Babbush,et al. Construction of Energy Functions for Lattice Heteropolymer Models: Efficient Encodings for Constraint Satisfaction Programming and Quantum Annealing , 2012 .
[21] A. Beacham. Hiding Our Colors , 1995 .
[22] Daniel A. Lidar,et al. Evidence for quantum annealing with more than one hundred qubits , 2013, Nature Physics.
[23] Daniel A. Lidar,et al. Defining and detecting quantum speedup , 2014, Science.
[24] Christoph Lenzen,et al. A generalized timeline representation, services, and interface for automating space mission operations , 2012, SpaceOps 2012 Conference.
[25] Jj Org Hoomann. Where Ignoring Delete Lists Works: Local Search Topology in Planning Benchmarks , 2003 .
[26] Travis S. Humble,et al. Adiabatic quantum programming: minor embedding with hard faults , 2012, Quantum Information Processing.
[27] Malte Helmert,et al. Complexity results for standard benchmark domains in planning , 2003, Artif. Intell..
[28] Daniel A. Lidar,et al. Benchmarking the D-Wave adiabatic quantum optimizer via 2D-Ising spin glasses , 2013 .
[29] Endre Boros,et al. Pseudo-Boolean optimization , 2002, Discret. Appl. Math..
[30] U. Vazirani,et al. How "Quantum" is the D-Wave Machine? , 2014, 1401.7087.
[31] Cristopher Moore,et al. Almost all graphs with average degree 4 are 3-colorable , 2002, STOC '02.
[32] Peter C. Cheeseman,et al. Where the Really Hard Problems Are , 1991, IJCAI.
[33] O. Dubois,et al. On the non-3-colourability of random graphs , 2002 .
[34] Alán Aspuru-Guzik,et al. Bayesian network structure learning using quantum annealing , 2014, The European Physical Journal Special Topics.
[35] S. Knysh,et al. Quantum Optimization of Fully-Connected Spin Glasses , 2014, 1406.7553.
[36] Daniel A. Lidar,et al. Experimental Signature of Programmable Quantum Annealing (Author's Manuscript) , 2013 .
[37] D. Achlioptas,et al. A sharp threshold for k-colorability , 1999 .
[38] E. Rieffel,et al. Quantum Computing: A Gentle Introduction , 2011 .
[39] János Komlós,et al. Limit distribution for the existence of hamiltonian cycles in a random graph , 1983, Discret. Math..
[40] Daniel A. Lidar,et al. Probing for quantum speedup on D-Wave Two , 2014 .
[41] Alán Aspuru-Guzik,et al. Resource efficient gadgets for compiling adiabatic quantum optimization problems , 2013, 1307.8041.
[42] Paolo Traverso,et al. Automated planning - theory and practice , 2004 .
[43] Jeremy Frank,et al. Parametrized Families of Hard Planning Problems from Phase Transitions , 2014, AAAI.
[44] Colin P. Williams,et al. A Near-Term Quantum Computing Approach for Hard Computational Problems in Space Exploration , 2012, 1204.2821.
[45] Daniel A. Lidar,et al. Error-corrected quantum annealing with hundreds of qubits , 2013, Nature Communications.
[46] Paolo Traverso,et al. Automated Planning: Theory & Practice , 2004 .
[47] M. Fox,et al. The 3rd International Planning Competition: Results and Analysis , 2003, J. Artif. Intell. Res..
[48] M. Sipser,et al. Quantum Computation by Adiabatic Evolution , 2000, quant-ph/0001106.
[49] Richard Fikes,et al. STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving , 1971, IJCAI.
[50] Avrim Blum,et al. Fast Planning Through Planning Graph Analysis , 1995, IJCAI.
[51] Daniel A. Lidar,et al. Performance of quantum annealing on random Ising problems implemented using the D-Wave Two , 2014 .
[52] Isaac L. Chuang,et al. Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .