Evaluation of MEMS materials of construction for implantable medical devices.

[1]  D. Edell,et al.  Biocompatibility of a silicon based peripheral nerve electrode. , 1982, Biomaterials, medical devices, and artificial organs.

[2]  T Albrektsson,et al.  An ultrastructural characterization of the interface between bone and sputtered titanium or stainless steel surfaces. , 1986, Biomaterials.

[3]  Microfabrication technology for development of chronic neural information transducers , 1986, 1986 International Electron Devices Meeting.

[4]  C. R. Howlett,et al.  The effect of silicon nitride ceramic on rabbit skeletal cells and tissue. An in vitro and in vivo investigation. , 1989, Clinical orthopaedics and related research.

[5]  T Albrektsson,et al.  Qualitative interfacial study between bone and tantalum, niobium or commercially pure titanium. , 1990, Biomaterials.

[6]  J. C. Martin,et al.  Biocompatibility and corrosion resistance in biological media of hard ceramic coatings sputter deposited on metal implants , 1991 .

[7]  Tayfun Akin,et al.  A micromachined silicon sieve electrode for nerve regeneration applications , 1991, TRANSDUCERS '91: 1991 International Conference on Solid-State Sensors and Actuators. Digest of Technical Papers.

[8]  M. Harmand,et al.  Cytocompatibility of two coating materials, amorphous alumina and silicon carbide, using human differentiated cell cultures. , 1991, Biomaterials.

[9]  P. Griss,et al.  Biocompatibility of Siliconcarbide and Siliconnitride Ceramics. Results of an Animal Experiment , 1992 .

[10]  A. Krajewski,et al.  Bioceramics and the human body , 1992 .

[11]  Surface Coating of PECVD a-SiC:H to Improve Biocompatibility , 1992 .

[12]  D. Edell,et al.  Factors influencing the biocompatibility of insertable silicon microshafts in cerebral cortex , 1992, IEEE Transactions on Biomedical Engineering.

[13]  K. Horch,et al.  Biocompatibility of silicon-based electrode arrays implanted in feline cortical tissue. , 1993, Journal of biomedical materials research.

[14]  Biocompatibility of glass-encapsulated electronic chips (transponders) used for the identification of pigs , 1993, Veterinary Record.

[15]  M. Schaldach,et al.  Coating of cardiovascular stents with amorphous silicon carbide to reduce thrombogenicity , 1994, Proceedings of 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[16]  Low-stress silicon nitride for insulating multielectrode arrays , 1994, Proceedings of 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[17]  P. Doherty,et al.  The cytotoxicity evaluation of Kevlar and silicon carbide by MTT assay , 1994 .

[18]  K. Najafi,et al.  A micromachined silicon sieve electrode for nerve regeneration applications , 1994, IEEE Transactions on Biomedical Engineering.

[19]  K. Najafi Recent progress in micromachining technology and application in implantable biomedical systems , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[20]  N. Rushton,et al.  Toxicity of particulate silicon carbide for macrophages, fibroblasts and osteoblast-like cells in vitro. , 1995, Bio-medical materials and engineering.

[21]  A. Bolz,et al.  Introduction of a new coronary stent with enhanced radioopacity and hemocompatibility , 1995, Proceedings of 17th International Conference of the Engineering in Medicine and Biology Society.

[22]  J U Meyer,et al.  Micropatterned biocompatible materials with applications for cell cultivation , 1995 .

[23]  Mauro Ferrari,et al.  Silicon microimplants: fabrication and biocompatibility , 1995 .

[24]  S. Santavirta,et al.  Human monocytes stimulation by particles of hydroxyapatite, silicon carbide and diamond: in vitro studies of new prosthesis coatings. , 1996, Biomaterials.

[25]  A. Bolz,et al.  Improvement of stenting therapy with a silicon carbide coated tantalum stent , 1996 .

[26]  R Lappalainen,et al.  Benign response to particles of diamond and SiC: bone chamber studies of new joint replacement coating materials in rabbits. , 1996, Biomaterials.

[27]  M. Madou Fundamentals of microfabrication , 1997 .

[28]  Y. Izumi,et al.  Calcium and silicon from bioactive glass concerned with formation of nodules in periodontal-ligament fibroblasts in vitro. , 1997, Journal of oral rehabilitation.

[29]  Phosphate and cell growth on nanostructured semiconductors , 1997 .

[30]  P. Mestres,et al.  Surface-treated catheters with ion beam-based process evaluation in rats. , 2008, Artificial organs.

[31]  S. Santavirta,et al.  Biocompatibility of silicon carbide in colony formation test in vitro , 1998, Archives of Orthopaedic and Trauma Surgery.

[32]  P. Hernández,et al.  Evaluation of biocompatibility of pH-ISFET materials during long-term subcutaneous implantation , 1998 .

[33]  D. Hungerford,et al.  Enhanced proliferation and osteocalcin production by human osteoblast-like MG63 cells on silicon nitride ceramic discs. , 1999, Biomaterials.

[34]  S. C Bayliss,et al.  The culture of neurons on silicon , 1999 .

[35]  S. L. Buckberry,et al.  A material for melding humans and machines , 1999 .

[36]  S. Ding,et al.  Characterization of hydroxyapatite and titanium coatings sputtered on Ti-6Al-4V substrate. , 1999, Journal of biomedical materials research.

[37]  M. Einarson Controlled-release microchip , 1999, Nature Biotechnology.

[38]  Mechanical and histological investigations on pressureless sintered SiC dental implants. , 1999, Okajimas folia anatomica Japonica.

[39]  D. Brunette,et al.  The effects of the surface topography of micromachined titanium substrata on cell behavior in vitro and in vivo. , 1999, Journal of biomechanical engineering.

[40]  A. Y. Chow,et al.  Subretinal implantation of semiconductor-based photodiodes: progress and challenges. , 1999, Journal of rehabilitation research and development.

[41]  D. Szarowski,et al.  Cerebral Astrocyte Response to Micromachined Silicon Implants , 1999, Experimental Neurology.

[42]  S. C. Bayliss,et al.  The Culture of Mammalian Cells on Nanostructured Silicon , 1999 .

[43]  S. C. Bayliss,et al.  Nature of the Silicon-Animal Cell Interface , 2000 .

[44]  C. Wilson,et al.  Multiple site silicon-based probes for chronic recordings in freely moving rats: implantation, recording and histological verification , 2000, Journal of Neuroscience Methods.

[45]  S. C. Bayliss,et al.  Biologically Interfaced Porous Silicon Devices , 2000 .

[46]  D. Hungerford,et al.  Proinflammatory cytokine expression of IL-1β and TNF-α by human osteoblast-like MG-63 cells upon exposure to silicon nitride in vitro , 2000 .

[47]  D. Hungerford,et al.  Proinflammatory cytokine expression of IL-1beta and TNF-alpha by human osteoblast-like MG-63 cells upon exposure to silicon nitride in vitro. , 2000, Journal of biomedical materials research.

[48]  Neal S Peachey,et al.  Subretinal implantation of semiconductor-based photodiodes: durability of novel implant designs. , 2002, Journal of rehabilitation research and development.