Universal Interactive Preferences

We prove that a universal preference type space exists under much more general conditions than those postulated by [1] for a large class of preferences beyond [4]. To wit, it is enough that preferences can be encoded by a countable collection of continuous functionals, while the preferences themselves need not necessarily be continuous or regular, like, e.g., in the case of lexicographic preferences. The proof relies on a far-reaching generalization of a method developed by [3]. The full statements and proofs are provided in [2].

[1]  S. Zamir,et al.  Formulation of Bayesian analysis for games with incomplete information , 1985 .

[2]  E. Rowland Theory of Games and Economic Behavior , 1946, Nature.

[3]  Sylvain Sorin,et al.  Repeated Games. Part A: Background Material , 1994 .

[4]  Faruk Gul,et al.  Temptation and Self‐Control , 1999 .

[5]  Martin Meier,et al.  Hierarchies of beliefs for compact possibility models , 2005 .

[6]  P. Wakker Prospect Theory: For Risk and Ambiguity , 2010 .

[7]  Efe A. Ok,et al.  Incomplete preferences under uncertainty: Indecisiveness in beliefs versus tastes , 2012 .

[8]  Marciano M. Siniscalchi,et al.  Hierarchies of Conditional Beliefs and Interactive Epistemology in Dynamic Games , 1999 .

[9]  Massimo Marinacci,et al.  Social Decision Theory: Choosing within and between Groups , 2012 .

[10]  Burkhard C. Schipper,et al.  Unawareness, Beliefs, and Speculative Trade , 2012, Games Econ. Behav..

[11]  Eddie Dekel,et al.  Hierarchies of Beliefs and Common Knowledge , 1993 .

[12]  Yi-Chun Chen,et al.  Universality of the Epstein-Wang type structure , 2010, Games Econ. Behav..

[13]  Dov Samet,et al.  Coherent beliefs are not always types , 1999 .

[14]  Bonnie Thurston,et al.  Temptation , 2004 .

[15]  I. Gilboa,et al.  Advances in Economics and Econometrics: Ambiguity and the Bayesian Paradigm , 2011 .

[16]  Lawrence S. Moss,et al.  Final coalgebras for functors on measurable spaces , 2006, Inf. Comput..

[17]  W. Kets Bounded Reasoning and Higher-Order Uncertainty , 2012 .

[18]  Edi Karni,et al.  Subjective Expected Utility With Incomplete Preferences , 2013 .

[19]  Alfredo Di Tillio,et al.  Subjective Expected Utility in Games , 2009 .

[20]  Aviad Heifetz,et al.  Universal Interactive Preferences , 2015 .

[21]  Martin Meier Universal knowledge-belief structures , 2008, Games Econ. Behav..

[22]  J. Harsanyi Games with Incomplete Information Played by 'Bayesian' Players, Part III. The Basic Probability Distribution of the Game , 1968 .

[23]  A. Heifetz The bayesian formulation of incomplete information — The non-compact case , 1993 .

[24]  Larry G. Epstein,et al.  "Beliefs about Beliefs" without Probabilities , 1996 .

[25]  David S. Ahn Hierarchies of ambiguous beliefs , 2007, J. Econ. Theory.

[26]  A. Heifetz,et al.  Topology-Free Typology of Beliefs , 1998 .

[27]  A. Heifetz,et al.  All Types Naive and Canny , 2012 .

[28]  Eddie Dekel,et al.  Lexicographic Probabilities and Choice Under Uncertainty , 1991 .

[29]  Miklós Pintér,et al.  Generalized type spaces , 2011 .