Flow boundary conditions from nano- to micro-scales.

The development of microfluidic devices has recently revived the interest in "old" problems associated with transport at, or across, interfaces. As the characteristic sizes are decreased, the use of pressure gradients to transport fluids becomes problematic, and new, interface driven, methods must be considered. This has lead to new investigations of flow near interfaces, and to the conception of interfaces engineered at various scales to reduce flow friction. In this review, we discuss the present theoretical understanding of flow past solid interfaces at different length scales. We also briefly discuss the corresponding phenomenon of heat transport, and the influence of surface slip on interface driven ( electro-osmotic) flows.

[1]  Sauro Succi,et al.  Mesoscopic modelling of local phase transitions and apparent-slip phenomena in microflows , 2006, Math. Comput. Simul..

[2]  P. Tabeling,et al.  Comment on "Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface". , 2006, Physical review letters.

[3]  P. Tabeling,et al.  Slippage of water past superhydrophobic carbon nanotube forests in microchannels. , 2006, Physical review letters.

[4]  Chih-Ming Ho,et al.  Effective slip and friction reduction in nanograted superhydrophobic microchannels , 2006 .

[5]  Andrea Mammoli,et al.  Drag reduction on a patterned superhydrophobic surface. , 2006, Physical review letters.

[6]  E. Trizac,et al.  Liquid friction on charged surfaces: from hydrodynamic slippage to electrokinetics. , 2006, The Journal of chemical physics.

[7]  J. Barrat,et al.  Modeling transient absorption and thermal conductivity in a simple nanofluid. , 2006, Nano letters (Print).

[8]  K. Jacobs,et al.  Slip-controlled thin-film dynamics , 2006, cond-mat/0603452.

[9]  Paul V Braun,et al.  Thermal conductance of hydrophilic and hydrophobic interfaces. , 2006, Physical review letters.

[10]  L. Joly,et al.  Effets Électrocinétiques sur Surfaces Glissantes , 2006 .

[11]  Hans Jürgen Herrmann,et al.  Lattice Boltzmann simulations of apparent slip in hydrophobic microchannels , 2005, physics/0509035.

[12]  朱克勤 Journal of Fluid Mechanics创刊50周年 , 2006 .

[13]  David Quéré,et al.  Non-sticking drops , 2005 .

[14]  S. Garde,et al.  Thermal resistance of nanoscopic liquid-liquid interfaces: dependence on chemistry and molecular architecture. , 2005, Nano letters.

[15]  Hans-Jürgen Butt,et al.  Boundary slip in Newtonian liquids: a review of experimental studies , 2005 .

[16]  D. Quéré,et al.  On water repellency , 2005 .

[17]  Eric Lauga,et al.  A note on the stability of slip channel flows , 2005, physics/0503225.

[18]  E. Charlaix,et al.  Boundary slip on smooth hydrophobic surfaces: intrinsic effects and possible artifacts. , 2005, Physical review letters.

[19]  Blair Perot,et al.  Laminar drag reduction in microchannels using ultrahydrophobic surfaces , 2004 .

[20]  J. Barrat,et al.  Dynamics of simple liquids at heterogeneous surfaces: Molecular-dynamics simulations and hydrodynamic description , 2004, The European physical journal. E, Soft matter.

[21]  Howard A. Stone,et al.  ENGINEERING FLOWS IN SMALL DEVICES , 2004 .

[22]  S. Troian,et al.  Molecular origin and dynamic behavior of slip in sheared polymer films. , 2004, Physical review letters.

[23]  M. Velarde,et al.  Momentum transport at a fluid–porous interface , 2003 .

[24]  J. Baudry,et al.  Glissement hydrodynamique d'un liquide simple à l'interface solide liquide , 2003 .

[25]  Howard A. Stone,et al.  Effective slip in pressure-driven Stokes flow , 2003, Journal of Fluid Mechanics.

[26]  Hans-Jürgen Butt,et al.  Surface roughness and hydrodynamic boundary slip of a newtonian fluid in a completely wetting system. , 2003, Physical review letters.

[27]  J. Barrat,et al.  Low-friction flows of liquid at nanopatterned interfaces , 2003, Nature materials.

[28]  Olga I. Vinogradova,et al.  Dynamic effects on force measurements. 2. Lubrication and the atomic force microscope , 2003 .

[29]  J. Barrat,et al.  Kapitza resistance at the liquid—solid interface , 2002, cond-mat/0209607.

[30]  Orla M. Wilson,et al.  Colloidal metal particles as probes of nanoscale thermal transport in fluids , 2002 .

[31]  Armand Ajdari,et al.  Patterning flows using grooved surfaces. , 2002, Analytical chemistry.

[32]  P. Gennes On Fluid/Wall Slippage , 2001, cond-mat/0112383.

[33]  S. Granick,et al.  Rate-dependent slip of Newtonian liquid at smooth surfaces. , 2001, Physical review letters.

[34]  J. Banavar,et al.  Boundary conditions at a fluid-solid interface. , 2000, Physical review letters.

[35]  Marek Cieplak,et al.  Christodoulides, Demetrios N. , 2001 .

[36]  Hervet,et al.  Direct experimental evidence of slip in hexadecane: solid interfaces , 2000, Physical review letters.

[37]  J. Barrat,et al.  Influence of wetting properties on hydrodynamic boundary conditions at a fluid/solid interface , 1998, cond-mat/9812218.

[38]  L. Léger,et al.  Wall slip in polymer melts , 1997 .

[39]  S. Troian,et al.  A general boundary condition for liquid flow at solid surfaces , 1997, Nature.

[40]  Smith,et al.  Friction on adsorbed monolayers. , 1996, Physical review. B, Condensed matter.

[41]  P. Gennes,et al.  Wetting and Slippage of Polymer Melts on Semi-ideal Surfaces , 1994 .

[42]  L. Bocquet,et al.  Hydrodynamic boundary conditions, correlation functions, and Kubo relations for confined fluids. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[43]  J. Georges,et al.  Drainage of thin liquid films between relatively smooth surfaces , 1993 .

[44]  Robbins,et al.  Phase transitions and universal dynamics in confined films. , 1992, Physical review letters.

[45]  Robbins,et al.  Shear flow near solids: Epitaxial order and flow boundary conditions. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[46]  R. Pohl,et al.  Thermal boundary resistance , 1989 .

[47]  John L. Anderson,et al.  Colloid Transport by Interfacial Forces , 1989 .

[48]  Physical Review Letters 63 , 1989 .

[49]  R. J. Hunter Foundations of Colloid Science , 1987 .

[50]  B. Castaing,et al.  Mobility of the3He solid-liquid interface: Experiment and theory , 1986 .

[51]  Derek Y. C. Chan,et al.  The drainage of thin liquid films between solid surfaces , 1985 .

[52]  Faraday Discuss , 1985 .

[53]  S. Richardson,et al.  On the no-slip boundary condition , 1973, Journal of Fluid Mechanics.

[54]  J. R. Philip Integral properties of flows satisfying mixed no-slip and no-shear conditions , 1972 .

[55]  D. Joseph,et al.  Boundary conditions at a naturally permeable wall , 1967, Journal of Fluid Mechanics.

[56]  D. Joseph,et al.  Lubrication of a Porous Bearing—Stokes’ Solution , 1966 .