Multilevel coarse graining and nano-pattern discovery in many particle stochastic systems

In this work we propose a hierarchy of Markov chain Monte Carlo methods for sampling equilibrium properties of stochastic lattice systems with competing short and long range interactions. Each Monte Carlo step is composed by two or more sub-steps efficiently coupling coarse and finer state spaces. The method can be designed to sample the exact or controlled-error approximations of the target distribution, providing information on levels of different resolutions, as well as at the microscopic level. In both strategies the method achieves significant reduction of the computational cost compared to conventional Markov chain Monte Carlo methods. Applications in phase transition and pattern formation problems confirm the efficiency of the proposed methods.

[1]  P. Diaconis,et al.  LOGARITHMIC SOBOLEV INEQUALITIES FOR FINITE MARKOV CHAINS , 1996 .

[2]  N. Goldenfeld Lectures On Phase Transitions And The Renormalization Group , 1972 .

[3]  Coupled Coarse Graining and Markov Chain Monte Carlo for Lattice Systems , 2012, 1006.3781.

[4]  Kurt Kremer,et al.  Simulation of Polymer Melts. II. From Coarse-Grained Models Back to Atomistic Description , 1998 .

[5]  Andrew J. Majda,et al.  Coarse-grained stochastic processes and Monte Carlo simulations in lattice systems , 2003 .

[6]  A. Masi,et al.  Mathematical Methods for Hydrodynamic Limits , 1991 .

[7]  Markos A. Katsoulakis,et al.  Information Loss in Coarse-Graining of Stochastic Particle Dynamics , 2006 .

[8]  Christian P. Robert,et al.  Monte Carlo Statistical Methods (Springer Texts in Statistics) , 2005 .

[9]  Kurt Kremer,et al.  Multiscale Problems in Polymer Science: Simulation Approaches , 2001 .

[10]  Stefan Grosskinsky Warwick,et al.  Interacting Particle Systems , 2016 .

[11]  Petr Plechác,et al.  Coarse-graining schemes for stochastic lattice systems with short and long-range interactions , 2010, Math. Comput..

[12]  Tim Hesterberg,et al.  Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.

[13]  Petr Plechác,et al.  Multibody Interactions in Coarse-Graining Schemes for Extended Systems , 2008, SIAM J. Sci. Comput..

[14]  Mehran Kardar,et al.  Crossover to equivalent-neighbor multicritical behavior in arbitrary dimensions , 1983 .

[15]  Abhijit Chatterjee,et al.  Systems tasks in nanotechnology via hierarchical multiscale modeling : Nanopattern formation in heteroepitaxy , 2007 .

[16]  S. Duane,et al.  Hybrid Monte Carlo , 1987 .

[17]  T M Li Ge Te Interacting Particle Systems , 2013 .

[18]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[19]  Petr Plechác,et al.  Numerical and Statistical Methods for the Coarse-Graining of Many-Particle Stochastic Systems , 2008, J. Sci. Comput..

[20]  Petr Plechác,et al.  Hierarchical fractional-step approximations and parallel kinetic Monte Carlo algorithms , 2011, J. Comput. Phys..

[21]  Florian Müller-Plathe,et al.  Coarse-graining in polymer simulation: from the atomistic to the mesoscopic scale and back. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[22]  Jianguo Dai,et al.  Coarse-grained lattice kinetic Monte Carlo simulation of systems of strongly interacting particles. , 2008, The Journal of chemical physics.

[23]  Jun S. Liu,et al.  Simulated Sintering: Markov Chain Monte Carlo With Spaces of Varying Dimensions , 2007 .

[24]  A. Majda,et al.  Coarse-grained stochastic processes for microscopic lattice systems , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Abhijit Chatterjee,et al.  Multiscale spatial Monte Carlo simulations: multigriding, computational singular perturbation, and hierarchical stochastic closures. , 2006, The Journal of chemical physics.

[26]  Barry Simon,et al.  The statistical mechanics of lattice gases , 1993 .

[27]  Markos A. Katsoulakis,et al.  Coarse-grained stochastic processes and kinetic Monte Carlo simulators for the diffusion of interacting particles , 2003 .

[28]  D. Ceperley Path integrals in the theory of condensed helium , 1995 .

[29]  Markos A. Katsoulakis,et al.  Mathematical strategies in the coarse-graining of extensive systems: Error quantification and adaptivity , 2008 .

[30]  Dionisios G. Vlachos,et al.  Monte Carlo algorithms for complex surface reaction mechanisms: efficiency and accuracy , 2001 .

[31]  Markos A. Katsoulakis,et al.  COARSE-GRAINING SCHEMES AND A POSTERIORI ERROR ESTIMATES FOR STOCHASTIC LATTICE SYSTEMS , 2006, math/0608007.

[32]  Kurt Kremer,et al.  Hierarchical modeling of polystyrene: From atomistic to coarse-grained simulations , 2006 .

[33]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[34]  Yalchin Efendiev,et al.  Preconditioning Markov Chain Monte Carlo Simulations Using Coarse-Scale Models , 2006, SIAM J. Sci. Comput..

[35]  Jim R. Parker,et al.  Algorithms for image processing and computer vision , 1996 .

[36]  Radford M. Neal An improved acceptance procedure for the hybrid Monte Carlo algorithm , 1992, hep-lat/9208011.

[37]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[38]  Alexandros Sopasakis,et al.  Error Analysis of Coarse-Graining for Stochastic Lattice Dynamics , 2006, SIAM J. Numer. Anal..