Bi-direction synthesis for reversible circuits

Quantum computing is one of the most promising emerging technologies of the future. Reversible circuits are an important class of quantum circuits. In this paper, we investigate the problem of optimally synthesizing four-qubit reversible circuits. We present an enhanced bidirectional synthesis approach. Due to the super-exponential increase on the memory requirement, all the existing methods can only perform four steps for the CNP (Control-Not gate, NOT gate, and Peres gate) library. Our novel method can achieve 12 steps. As a result, we augment the number of circuits that can be optimally synthesized by over 5/sup */10/sup 6/ times. Moreover, our approach is faster than the existing approaches by orders of magnitude. The promising experimental results demonstrate the effectiveness of our approach.

[1]  DiVincenzo,et al.  Five two-bit quantum gates are sufficient to implement the quantum Fredkin gate. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[2]  John P. Hayes,et al.  Synthesis of reversible logic circuits , 2003, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[3]  Guowu Yang,et al.  Algebraic Characterization of Reversible Logic Gates , 2006, Theory of Computing Systems.

[4]  Birger Raa,et al.  INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL J. Phys. A: Math. Gen. 35 (2002) 7063–7078 PII: S0305-4470(02)34943-6 Generating the group of reversible logic gates , 2022 .

[5]  Guowu Yang,et al.  Majority-based reversible logic gates , 2005, Theor. Comput. Sci..

[6]  M. I. Kargapolov,et al.  Fundamentals of the theory of groups , 1979 .

[7]  Martin Lukac,et al.  A Hierarchical Approach to Computer-Aided Design of Quantum Circuits , 2003 .

[8]  John P. Hayes,et al.  Reversible logic circuit synthesis , 2002, IWLS.

[9]  Igor L. Markov,et al.  Arbitrary two-qubit computation in 23 elementary gates , 2003, DAC 2003.

[10]  H. Weyl Permutation Groups , 2022 .

[11]  Leo Storme,et al.  Group Theoretical Aspects of Reversible Logic Gates , 1999, J. Univers. Comput. Sci..

[12]  Gerhard W. Dueck,et al.  A transformation based algorithm for reversible logic synthesis , 2003, Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451).

[13]  Tommaso Toffoli,et al.  Reversible Computing , 1980, ICALP.

[14]  Guowu Yang,et al.  Fast synthesis of exact minimal reversible circuits using group theory , 2005, Proceedings of the ASP-DAC 2005. Asia and South Pacific Design Automation Conference, 2005..

[15]  Igor L. Markov,et al.  An arbitrary twoqubit computation In 23 elementary gates or less , 2003, DAC.