Bi-direction synthesis for reversible circuits
暂无分享,去创建一个
[1] DiVincenzo,et al. Five two-bit quantum gates are sufficient to implement the quantum Fredkin gate. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[2] John P. Hayes,et al. Synthesis of reversible logic circuits , 2003, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..
[3] Guowu Yang,et al. Algebraic Characterization of Reversible Logic Gates , 2006, Theory of Computing Systems.
[4] Birger Raa,et al. INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL J. Phys. A: Math. Gen. 35 (2002) 7063–7078 PII: S0305-4470(02)34943-6 Generating the group of reversible logic gates , 2022 .
[5] Guowu Yang,et al. Majority-based reversible logic gates , 2005, Theor. Comput. Sci..
[6] M. I. Kargapolov,et al. Fundamentals of the theory of groups , 1979 .
[7] Martin Lukac,et al. A Hierarchical Approach to Computer-Aided Design of Quantum Circuits , 2003 .
[8] John P. Hayes,et al. Reversible logic circuit synthesis , 2002, IWLS.
[9] Igor L. Markov,et al. Arbitrary two-qubit computation in 23 elementary gates , 2003, DAC 2003.
[10] H. Weyl. Permutation Groups , 2022 .
[11] Leo Storme,et al. Group Theoretical Aspects of Reversible Logic Gates , 1999, J. Univers. Comput. Sci..
[12] Gerhard W. Dueck,et al. A transformation based algorithm for reversible logic synthesis , 2003, Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451).
[13] Tommaso Toffoli,et al. Reversible Computing , 1980, ICALP.
[14] Guowu Yang,et al. Fast synthesis of exact minimal reversible circuits using group theory , 2005, Proceedings of the ASP-DAC 2005. Asia and South Pacific Design Automation Conference, 2005..
[15] Igor L. Markov,et al. An arbitrary twoqubit computation In 23 elementary gates or less , 2003, DAC.