Classical symmetries and QAOA

We study the relationship between the Quantum Approximate Optimization Algorithm (QAOA) and the underlying symmetries of the objective function to be optimized. Our approach formalizes the connection between quantum symmetry properties of the QAOA dynamics and the group of classical symmetries of the objective function. The connection is general and includes but is not limited to problems defined on graphs. We show a series of results exploring the connection and highlight examples of hard problem classes where a nontrivial symmetry subgroup can be obtained efficiently. In particular we show how classical objective function symmetries lead to invariant measurement outcome probabilities across states connected by such symmetries, independent of the choice of algorithm parameters or number of layers. To illustrate the power of the developed connection, we apply machine learning techniques towards predicting QAOA performance based on symmetry considerations. We provide numerical evidence that a small set of graph symmetry properties suffices to predict the minimum QAOA depth required to achieve a target approximation ratio on the MaxCut problem, in a practically important setting where QAOA parameter schedules are constrained to be linear and hence easier to optimize.

[1]  I. S. Filotti,et al.  A polynomial-time algorithm for determining the isomorphism of graphs of fixed genus , 1980, STOC '80.

[2]  Rosario Fazio,et al.  Quantum Annealing: a journey through Digitalization, Control, and hybrid Quantum Variational schemes , 2019, 1906.08948.

[3]  Aniruddha Bapat,et al.  Bang-bang control as a design principle for classical and quantum optimization algorithms , 2018, Quantum Inf. Comput..

[4]  I. Krasikov,et al.  Upper Bounds on the Automorphism Group of a Graph Discrete Mathematics 256 (2002) 489-493. , 2006 .

[5]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm Applied to a Bounded Occurrence Constraint Problem , 2014, 1412.6062.

[6]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[7]  Rune B. Lyngsø,et al.  Lecture Notes I , 2008 .

[8]  P. Erdös ASYMMETRIC GRAPHS , 2022 .

[9]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[10]  J. Rotman Advanced Modern Algebra , 2002 .

[11]  Gábor Simonyi,et al.  Graph entropy: A survey , 1993, Combinatorial Optimization.

[12]  Jianxin Chen,et al.  Alibaba Cloud Quantum Development Platform: Applications to Quantum Algorithm Design , 2019, 1909.02559.

[13]  Ruslan Shaydulin,et al.  Evaluating Quantum Approximate Optimization Algorithm: A Case Study , 2019, 2019 Tenth International Green and Sustainable Computing Conference (IGSC).

[14]  Guy Kindler,et al.  Optimal inapproximability results for MAX-CUT and other 2-variable CSPs? , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[15]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[16]  E. Rieffel,et al.  Near-optimal quantum circuit for Grover's unstructured search using a transverse field , 2017, 1702.02577.

[17]  M. J. D. Powell,et al.  Direct search algorithms for optimization calculations , 1998, Acta Numerica.

[18]  Prasanna Balaprakash,et al.  Learning to Optimize Variational Quantum Circuits to Solve Combinatorial Problems , 2020, AAAI.

[19]  Stephan Eidenbenz,et al.  Grover Mixers for QAOA: Shifting Complexity from Mixer Design to State Preparation , 2020, 2020 IEEE International Conference on Quantum Computing and Engineering (QCE).

[20]  Mihalis Yannakakis,et al.  Optimization, approximation, and complexity classes , 1991, STOC '88.

[21]  Johan Håstad,et al.  Some optimal inapproximability results , 2001, JACM.

[22]  Martin Grohe,et al.  Fixed-Point Definability and Polynomial Time on Graphs with Excluded Minors , 2010, 2010 25th Annual IEEE Symposium on Logic in Computer Science.

[23]  Gian Giacomo Guerreschi,et al.  QAOA for Max-Cut requires hundreds of qubits for quantum speed-up , 2018, Scientific Reports.

[24]  Angel Garrido,et al.  Symmetry in Complex Networks , 2011, Symmetry.

[25]  A. Mowshowitz,et al.  Entropy and the complexity of graphs. I. An index of the relative complexity of a graph. , 1968, The Bulletin of mathematical biophysics.

[26]  Leo Zhou,et al.  Quantum Approximate Optimization Algorithm: Performance, Mechanism, and Implementation on Near-Term Devices , 2018, Physical Review X.

[27]  Ilya Safro,et al.  Multistart Methods for Quantum Approximate optimization , 2019, 2019 IEEE High Performance Extreme Computing Conference (HPEC).

[28]  M. Powell A Direct Search Optimization Method That Models the Objective and Constraint Functions by Linear Interpolation , 1994 .

[29]  Matthias Dehmer,et al.  A SYMMETRY INDEX FOR GRAPHS , 2010 .

[30]  Roman Schutski,et al.  Tensor Network Quantum Simulator With Step-Dependent Parallelization. , 2020 .

[31]  Rupak Biswas,et al.  From the Quantum Approximate Optimization Algorithm to a Quantum Alternating Operator Ansatz , 2017, Algorithms.

[32]  Stuart Hadfield,et al.  On the Representation of Boolean and Real Functions as Hamiltonians for Quantum Computing , 2018, ACM Transactions on Quantum Computing.

[33]  Stuart Hadfield,et al.  Quantum Algorithms for Scientific Computing and Approximate Optimization , 2018, 1805.03265.

[34]  Masoud Mohseni,et al.  Quantum approximate optimization of non-planar graph problems on a planar superconducting processor , 2020, 2004.04197.

[35]  Mario Szegedy,et al.  What do QAOA energies reveal about graphs , 2019, 1912.12277.

[36]  Stefan M. Wild,et al.  Asynchronously parallel optimization solver for finding multiple minima , 2018, Math. Program. Comput..

[37]  Ehsan Sadrfaridpour,et al.  Engineering fast multilevel support vector machines , 2019, Machine Learning.

[38]  Aric Hagberg,et al.  Exploring Network Structure, Dynamics, and Function using NetworkX , 2008, Proceedings of the Python in Science Conference.

[39]  Martin W. P. Savelsbergh,et al.  Branch-and-Price: Column Generation for Solving Huge Integer Programs , 1998, Oper. Res..

[40]  Peter Dankelmann,et al.  Automorphism group and diameter of a graph , 2012, J. Graph Theory.

[41]  Marek Karpinski,et al.  On Some Tighter Inapproximability Results (Extended Abstract) , 1999, ICALP.

[42]  Luis F. Chiroque,et al.  Novel Techniques to Speed Up the Computation of the Automorphism Group of a Graph , 2014, J. Appl. Math..

[43]  Matthew B. Hastings,et al.  Trivial low energy states for commuting Hamiltonians, and the quantum PCP conjecture , 2012, Quantum Inf. Comput..

[44]  Giacomo Nannicini,et al.  Improving Variational Quantum Optimization using CVaR , 2019, Quantum.

[45]  Supartha Podder,et al.  Symmetries, Graph Properties, and Quantum Speedups , 2020, 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS).

[46]  Andreas Geyer-Schulz,et al.  How Symmetric Are Real-World Graphs? A Large-Scale Study , 2018, Symmetry.

[47]  Robert Koenig,et al.  Obstacles to Variational Quantum Optimization from Symmetry Protection. , 2019, Physical review letters.

[48]  Benny Sudakov,et al.  On the asymmetry of random regular graphs and random graphs , 2002, Random Struct. Algorithms.

[49]  Ilia Krasikov,et al.  Upper bounds on the automorphism group of a graph0 , 2002, Discret. Math..

[50]  Pedro Antonio Gutiérrez,et al.  Projection-Based Ensemble Learning for Ordinal Regression , 2014, IEEE Transactions on Cybernetics.

[51]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[52]  Brendan D. McKay,et al.  Practical graph isomorphism, II , 2013, J. Symb. Comput..

[53]  Petteri Kaski,et al.  Engineering an Efficient Canonical Labeling Tool for Large and Sparse Graphs , 2007, ALENEX.

[54]  Igor L. Markov,et al.  Exploiting structure in symmetry detection for CNF , 2004, Proceedings. 41st Design Automation Conference, 2004..

[55]  Martin Grohe Structural and logical approaches to the graph isomorphism problem , 2012, SODA.

[56]  Brendan D. McKay,et al.  Computing automorphisms and canonical labellings of graphs , 1978 .

[57]  Alexander J. Smola,et al.  Support Vector Regression Machines , 1996, NIPS.

[58]  Vijay V. Vazirani,et al.  Approximation Algorithms , 2001, Springer Berlin Heidelberg.

[59]  Stuart Hadfield,et al.  Optimizing quantum heuristics with meta-learning , 2019, Quantum Machine Intelligence.

[60]  Lior Eldar,et al.  Local Hamiltonians Whose Ground States Are Hard to Approximate , 2015, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[61]  Stefan M. Wild,et al.  A batch, derivative-free algorithm for finding multiple local minima , 2016 .

[62]  László Babai,et al.  Graph isomorphism in quasipolynomial time [extended abstract] , 2015, STOC.

[63]  A. Harrow,et al.  Quantum Supremacy through the Quantum Approximate Optimization Algorithm , 2016, 1602.07674.

[64]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[65]  Hans L. Boblaender Polynomial algorithms for graph isomorphism and chromatic index on partial k -trees , 1990 .

[66]  M. B. Hastings,et al.  Classical and quantum bounded depth approximation algorithms , 2019, Quantum Inf. Comput..

[67]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[68]  Masoud Mohseni,et al.  Learning to learn with quantum neural networks via classical neural networks , 2019, ArXiv.

[69]  Peter J. Love,et al.  Bounds on MAXCUT QAOA performance for p>1 , 2020 .

[70]  David Gamarnik,et al.  The Quantum Approximate Optimization Algorithm Needs to See the Whole Graph: A Typical Case , 2020, ArXiv.

[71]  Willem Waegeman,et al.  An ensemble of Weighted Support Vector Machines for Ordinal Regression , 2007 .

[72]  Shinsei Ryu,et al.  Classification of topological quantum matter with symmetries , 2015, 1505.03535.

[73]  Gavin E. Crooks,et al.  Performance of the Quantum Approximate Optimization Algorithm on the Maximum Cut Problem , 2018, 1811.08419.

[74]  Eugene M. Luks,et al.  Isomorphism of graphs of bounded valence can be tested in polynomial time , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[75]  Ilya Safro,et al.  Network Alignment by Propagating Reliable Similarities , 2019, ArXiv.

[76]  Marek Karpinski,et al.  Polynomial time approximation schemes for dense instances of NP-hard problems , 1995, STOC '95.

[77]  Hans L. Bodlaender,et al.  Polynomial Algorithms for Graph Isomorphism and Chromatic Index on Partial k-Trees , 1988, J. Algorithms.

[78]  Gary L. Miller,et al.  Isomorphism testing for graphs of bounded genus , 1980, STOC '80.

[79]  Krishnan Balasubramanian,et al.  Computer Generation of Automorphism Groups of Weighted Graphs , 1994, J. Chem. Inf. Comput. Sci..

[80]  Jeff T. Linderoth,et al.  Orbital branching , 2007, Math. Program..