Application of Synchronization to Cooperative Control and Formation Flight of Spacecraft

This article presents a simple synchronization framework with application to synchronization control of formation flying spacecraft. A dynamical network of multiple Lagrangian systems is constructed by adding diffusive couplings to otherwise freely flying spacecraft. The proposed tracking control law synchronizes an arbitrary number of spacecraft into a common time-varying trajectory with global exponential convergence. The proposed strategy is much simpler than earlier work in terms of both the computational load and the required signals. Furthermore, in contrast with prior work which used simple double integrator models, the proposed method permits highly nonlinear systems and is further extended to adaptive synchronization, partial-state coupling, and time-delayed communications.

[1]  Bong Wie,et al.  Space Vehicle Dynamics and Control, Second Edition , 2008 .

[2]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[3]  Xiaoming Hu,et al.  A control Lyapunov function approach to multiagent coordination , 2002, IEEE Trans. Robotics Autom..

[4]  Randal W. Beard,et al.  Synchronized multiple spacecraft rotations , 2002, Autom..

[5]  C. A. Desoer,et al.  Nonlinear Systems Analysis , 1978 .

[6]  Richard M. Murray,et al.  Consensus problems in networks of agents with switching topology and time-delays , 2004, IEEE Transactions on Automatic Control.

[7]  Perry Y. Li,et al.  Formation and maneuver control of multiple spacecraft , 2003, Proceedings of the 2003 American Control Conference, 2003..

[8]  Henk Nijmeijer,et al.  Mutual synchronization of robots via estimated state feedback: a cooperative approach , 2004, IEEE Transactions on Control Systems Technology.

[9]  M. Vidyasagar,et al.  Nonlinear systems analysis (2nd ed.) , 1993 .

[10]  Jean-Jacques E. Slotine,et al.  Hamiltonian adaptive control of spacecraft , 1990 .

[11]  M. Spong,et al.  Stable flocking of multiple inertial agents on balanced graphs , 2006, 2006 American Control Conference.

[12]  Soon-Jo Chung,et al.  Nonlinear Model Reduction and Decentralized Control of Tethered Formation Flight , 2007 .

[13]  Petter Ögren,et al.  Cooperative control of mobile sensor networks:Adaptive gradient climbing in a distributed environment , 2004, IEEE Transactions on Automatic Control.

[14]  Bong Wie,et al.  Space Vehicle Dynamics and Control , 1998 .

[15]  Jean-Jacques E. Slotine,et al.  On Contraction Analysis for Nonlinear Systems Analyzing stability differentially leads to a new perspective on nonlinear dynamic systems , 1999 .

[16]  Gilbert Strang,et al.  Introduction to applied mathematics , 1988 .

[17]  F.Y. Hadaegh,et al.  A survey of spacecraft formation flying guidance and control. Part II: control , 2004, Proceedings of the 2004 American Control Conference.

[18]  李幼升,et al.  Ph , 1989 .

[19]  David W. Miller,et al.  Dynamics and control of electromagnetic satellite formations , 2006, 2006 American Control Conference.

[20]  H. Strobel Strang, G., Introduction to Applied Mathematics. Wellesley, Mass. Wellesley-Cambridge Press 1986. IX, 758 pp. ISBN 0-9614088-0-4 , 1989 .

[21]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[22]  Naomi Ehrich Leonard,et al.  Virtual leaders, artificial potentials and coordinated control of groups , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[23]  Jean-Jacques E. Slotine,et al.  Modularity, evolution, and the binding problem: a view from stability theory , 2001, Neural Networks.

[24]  J. Slotine,et al.  Contraction Analysis of Time-Delayed Communications Using Simplified Wave Variables , 2005, nlin/0512070.

[25]  Jie Lin,et al.  Coordination of groups of mobile autonomous agents using nearest neighbor rules , 2003, IEEE Trans. Autom. Control..

[26]  Jean-Jacques E. Slotine,et al.  Stable concurrent synchronization in dynamic system networks , 2005, Neural Networks.

[27]  Jean-Jacques E. Slotine,et al.  On partial contraction analysis for coupled nonlinear oscillators , 2004, Biological Cybernetics.

[28]  Vikram Kapila,et al.  Adaptive nonlinear control for spacecraft formation flying with coupled translational and attitude dynamics , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[29]  Jean-Jacques E. Slotine,et al.  Modular stability tools for distributed computation and control , 2003 .

[30]  Hyungjoo Yoon,et al.  Spacecraft Adaptive Attitude and Power Tracking with Variable Speed Control Moment Gyroscopes , 2002 .

[31]  P. Wang,et al.  Synchronized Formation Rotation and Attitude Control of Multiple Free-Flying Spacecraft , 1997 .

[32]  Jean-Jacques E. Slotine,et al.  On Contraction Analysis for Non-linear Systems , 1998, Autom..

[33]  M. Shuster A survey of attitude representation , 1993 .

[34]  Mark W. Spong,et al.  On synchronization of networked passive systems with time delays and application to bilateral teleoperation , 2005 .

[35]  Mehran Mesbahi,et al.  Formation flying control of multiple spacecraft via graphs , 2001 .

[36]  Soon-Jo Chung,et al.  ARGOS testbed: study of multidisciplinary challenges of future spaceborne interferometric arrays , 2004 .

[37]  Soon-Jo Chung,et al.  Nonlinear control and synchronization of multiple Lagrangian systems with application to tethered formation flight spacecraft , 2007 .

[38]  Soon-Jo Chung,et al.  Cooperative robot control and synchronization of Lagrangian systems , 2007, 2007 46th IEEE Conference on Decision and Control.

[39]  S. Ploen,et al.  A survey of spacecraft formation flying guidance and control (part 1): guidance , 2003, Proceedings of the 2003 American Control Conference, 2003..

[40]  J. Junkins,et al.  Stereographic Orientation Parameters for Attitude Dynamics: A Generalization of the Rodrigues Parameters , 1996 .

[41]  S. Ploen,et al.  Rigid body equations of motion for modeling and control of spacecraft formations. Part 1: Absolute equations of motion , 2004, Proceedings of the 2004 American Control Conference.