MEMO: multi-experiment mixture model analysis of censored data
暂无分享,去创建一个
Fabian J. Theis | Nicole Radde | Eva-Maria Geissen | Jan Hasenauer | Silke Hauf | Fabian J Theis | Stephanie Heinrich | J. Hasenauer | N. Radde | Stephanie Heinrich | Eva-Maria Geissen | Silke Hauf
[1] Bryan Howie. Life's onslaught , 2010 .
[2] B. Efron,et al. Bootstrap confidence intervals , 1996 .
[3] Ramon Grima,et al. Discreteness-induced concentration inversion in mesoscopic chemical systems , 2012, Nature Communications.
[4] Ronald M. Levy,et al. Joint Modeling and Registration of Cell Populations in Cohorts of High-Dimensional Flow Cytometric Data , 2013, PloS one.
[5] Yu-Qiu Zhang,et al. Ryanodine receptors contribute to the induction of nociceptive input-evoked long-term potentiation in the rat spinal cord slice , 2010, Molecular pain.
[6] Fabian J. Theis,et al. ODE Constrained Mixture Modelling: A Method for Unraveling Subpopulation Structures and Dynamics , 2014, PLoS Comput. Biol..
[7] Gyemin Lee,et al. EM algorithms for multivariate Gaussian mixture models with truncated and censored data , 2012, Comput. Stat. Data Anal..
[8] A. Raftery,et al. Estimating Bayes Factors via Posterior Simulation with the Laplace—Metropolis Estimator , 1997 .
[9] R. Grima,et al. An effective rate equation approach to reaction kinetics in small volumes: theory and application to biochemical reactions in nonequilibrium steady-state conditions. , 2010, The Journal of chemical physics.
[10] Sue Biggins,et al. Signalling dynamics in the spindle checkpoint response , 2014, Nature Reviews Molecular Cell Biology.
[11] Ursula Klingmüller,et al. Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood , 2009, Bioinform..
[12] Jamol Pender. The truncated normal distribution: Applications to queues with impatient customers , 2015, Oper. Res. Lett..
[13] Geoffrey J. McLachlan,et al. Maximum Likelihood Estimation of Mixture Densities for Binned and Truncated Multivariate Data , 2002, Machine Learning.
[14] Shuguang Huang,et al. Mixture‐model classification in DNA content analysis , 2007, Cytometry. Part A : the journal of the International Society for Analytical Cytology.
[15] G. McLachlan,et al. Fitting mixture models to grouped and truncated data via the EM algorithm. , 1988, Biometrics.
[16] David R. Anderson,et al. Multimodel Inference , 2004 .
[17] J. Skilling. Nested sampling for general Bayesian computation , 2006 .
[18] Luis A. Escobar,et al. Teaching about Approximate Confidence Regions Based on Maximum Likelihood Estimation , 1995 .
[19] P. Müller,et al. Approximatereference priors in the presence of latent structures , 2010 .
[20] Sonja Meyer,et al. Quantitative automated microscopy (QuAM) elucidates growth factor specific signalling in pain sensitization , 2010, Molecular pain.
[21] Jhagvaral Hasbold,et al. Activation-Induced B Cell Fates Are Selected by Intracellular Stochastic Competition , 2012, Science.
[22] Fabian J Theis,et al. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells , 2015, Nature Biotechnology.
[23] H. Akaike,et al. Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .
[24] Fabian J Theis,et al. Method of conditional moments (MCM) for the Chemical Master Equation , 2013, Journal of Mathematical Biology.
[25] Aleksandra A. Kolodziejczyk,et al. Accounting for technical noise in single-cell RNA-seq experiments , 2013, Nature Methods.
[26] S. Linnarsson,et al. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing , 2014, Nature Neuroscience.
[27] Karel Svoboda,et al. From cudgel to scalpel: toward precise neural control with optogenetics , 2011, Nature Methods.
[28] Ming-Hui Chen,et al. Monte Carlo Estimation of Bayesian Credible and HPD Intervals , 1999 .
[29] Raphael Gottardo,et al. Automated gating of flow cytometry data via robust model‐based clustering , 2008, Cytometry. Part A : the journal of the International Society for Analytical Cytology.
[30] M. Girolami,et al. Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).
[31] Radford M. Neal. Annealed importance sampling , 1998, Stat. Comput..
[32] Hans Clevers,et al. Single-cell messenger RNA sequencing reveals rare intestinal cell types , 2015, Nature.
[33] J. Mesirov,et al. Automated high-dimensional flow cytometric data analysis , 2009, Proceedings of the National Academy of Sciences.
[34] Theodore J. Perkins,et al. Estimating the Stochastic Bifurcation Structure of Cellular Networks , 2010, PLoS Comput. Biol..
[35] Gürol M. Süel,et al. Temporal competition between differentiation programs determines cell fate choice , 2011, Molecular systems biology.
[36] Jonas Wallin,et al. BayesFlow: latent modeling of flow cytometry cell populations , 2015, BMC Bioinformatics.
[37] Fabian J Theis,et al. High-dimensional Bayesian parameter estimation: case study for a model of JAK2/STAT5 signaling. , 2013, Mathematical biosciences.
[38] .. W. V. Der,et al. On Profile Likelihood , 2000 .
[39] Fabian J Theis,et al. Lessons Learned from Quantitative Dynamical Modeling in Systems Biology , 2013, PloS one.
[40] Chang Hyeong Lee,et al. A moment closure method for stochastic reaction networks. , 2009, The Journal of chemical physics.
[41] Darren J. Wilkinson,et al. Bayesian methods in bioinformatics and computational systems biology , 2006, Briefings Bioinform..
[42] Stefan Engblom,et al. Computing the moments of high dimensional solutions of the master equation , 2006, Appl. Math. Comput..
[43] Tomohiro Ando,et al. Bayesian Model Averaging and Bayesian Predictive Information Criterion for Model Selection , 2008 .
[44] Jens Timmer,et al. Joining forces of Bayesian and frequentist methodology: a study for inference in the presence of non-identifiability , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[45] Philipp S. Hoppe,et al. Single-cell technologies sharpen up mammalian stem cell research , 2014, Nature Cell Biology.
[46] Nima Aghaeepour,et al. Flow Cytometry Bioinformatics , 2013, PLoS Comput. Biol..
[47] P. Swain,et al. Intrinsic and extrinsic contributions to stochasticity in gene expression , 2002, Proceedings of the National Academy of Sciences of the United States of America.
[48] Heikki Haario,et al. DRAM: Efficient adaptive MCMC , 2006, Stat. Comput..
[49] Xiao-Li Meng,et al. SIMULATING RATIOS OF NORMALIZING CONSTANTS VIA A SIMPLE IDENTITY: A THEORETICAL EXPLORATION , 1996 .
[50] A Kremling,et al. Exploiting the bootstrap method for quantifying parameter confidence intervals in dynamical systems. , 2006, Metabolic engineering.
[51] Mark A. Girolami,et al. Bayesian ranking of biochemical system models , 2008, Bioinform..
[52] Christian Widmer,et al. Determinants of robustness in spindle assembly checkpoint signalling , 2013, Nature Cell Biology.
[53] David R. Anderson,et al. Model selection and multimodel inference : a practical information-theoretic approach , 2003 .
[54] A. Oudenaarden,et al. Cellular Decision Making and Biological Noise: From Microbes to Mammals , 2011, Cell.
[55] M. Elowitz,et al. Functional roles for noise in genetic circuits , 2010, Nature.
[56] Matthew M. Crane,et al. A Microfluidic System for Studying Ageing and Dynamic Single-Cell Responses in Budding Yeast , 2014, PloS one.
[57] J. Hadamard. Sur les problemes aux derive espartielles et leur signification physique , 1902 .
[58] S. S. Wilks. The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses , 1938 .
[59] Clifford M. Hurvich,et al. Regression and time series model selection in small samples , 1989 .
[60] Timm Schroeder,et al. Long-term single-cell imaging of mammalian stem cells , 2011, Nature Methods.
[61] W. Ebeling. Stochastic Processes in Physics and Chemistry , 1995 .
[62] N. Popović,et al. Phenotypic switching in gene regulatory networks , 2014, Proceedings of the National Academy of Sciences.
[63] J. Elf,et al. Fast evaluation of fluctuations in biochemical networks with the linear noise approximation. , 2003, Genome research.
[64] Lucas Pelkmans,et al. Using Cell-to-Cell Variability—A New Era in Molecular Biology , 2012, Science.
[65] Frank Allgöwer,et al. Computation of the posterior entropy in a Bayesian framework for parameter estimation in biological networks , 2010, 2010 IEEE International Conference on Control Applications.
[66] Fabian J. Theis,et al. destiny: diffusion maps for large-scale single-cell data in R , 2015, Bioinform..