Optical cavity modes in gold shell colloids
暂无分享,去创建一个
Harry A. Atwater | Alexander Moroz | Luke A. Sweatlock | A. Polman | H. Atwater | A. Polman | L. A. Sweatlock | A. Blaaderen | A. Moroz | J. J. Penninkhof | A. van Blaaderen | J. Penninkhof
[1] Alexander Moroz,et al. Optical properties of spherical and oblate spheroidal gold shell colloids , 2008 .
[2] S. Chakravarty,et al. Diamagnetism of nodal fermions , 2006, cond-mat/0611695.
[3] Nathan S. Lewis,et al. Spectral tuning of plasmon-enhanced silicon quantum dot luminescence , 2006 .
[4] Fei Le,et al. Nanorice: a hybrid plasmonic nanostructure. , 2006, Nano letters.
[5] Hans C. Gerritsen,et al. Fluorescence Enhancement by Metal‐Core/Silica‐Shell Nanoparticles , 2006 .
[6] A. Polman,et al. Angle‐Dependent Extinction of Anisotropic Silica/Au Core/Shell Colloids Made via Ion Irradiation , 2005 .
[7] Alexander Moroz,et al. Improvement of Mishchenko's T-matrix code for absorbing particles. , 2005, Applied optics.
[8] N J Halas,et al. Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[9] A. Moroz. Spectroscopic properties of a two-level atom interacting with a complex spherical nanoshell , 2004, quant-ph/0412094.
[10] Tatiana V. Teperik,et al. Radiative decay of plasmons in a metallic nanoshell , 2004 .
[11] Ignacy Gryczynski,et al. Enhanced Fluorescence from Fluorophores on Fractal Silver Surfaces. , 2003, The journal of physical chemistry. B.
[12] Naomi J. Halas,et al. Controlling the surface enhanced Raman effect via the nanoshell geometry , 2003 .
[13] D. Reinhoudt,et al. Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects. , 2002, Physical review letters.
[14] Jörg Enderlein,et al. Spectral properties of a fluorescing molecule within a spherical metallic nanocavityPresented at the LANMAT 2001 Conference on the Interaction of Laser Radiation with Matter at Nanoscopic Scales: From Single Molecule Spectroscopy to Materials Processing, Venice, 3–6 October, 2001. , 2002 .
[15] Jörg Enderlein,et al. Theoretical study of single molecule fluorescence in a metallic nanocavity , 2002 .
[16] Cai,et al. Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system , 2000, Physical review letters.
[17] M. Mishchenko,et al. Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. , 2000, Applied optics.
[18] A. Quirantes. Light scattering properties of spheroidal coated particles in random orientation , 1999 .
[19] Naomi J. Halas,et al. Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates , 1999 .
[20] F. G. D. Abajo,et al. MULTIPLE SCATTERING OF RADIATION IN CLUSTERS OF DIELECTRICS , 1999 .
[21] Larry D. Travis,et al. Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers , 1998 .
[22] Naomi J. Halas,et al. Nanoengineering of optical resonances , 1998 .
[23] Allen Taflove,et al. Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .
[24] Meyer H. Birnboim,et al. Composite structures for the enhancement of nonlinear-optical susceptibility , 1989 .
[25] M. Moskovits. Surface-enhanced spectroscopy , 1985 .
[26] Z. Kam,et al. Absorption and Scattering of Light by Small Particles , 1998 .
[27] Abraham Nitzan,et al. Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces , 1980 .
[28] R. W. Christy,et al. Optical Constants of the Noble Metals , 1972 .
[29] Milton Kerker,et al. Scattering of Electromagnetic Waves from Two Concentric Spheres , 1951 .
[30] Alfons van Blaaderen,et al. Metallodielectric Colloidal Core−Shell Particles for Photonic Applications , 2002 .
[31] P. F. Liao,et al. Lightning rod effect in surface enhanced Raman scattering , 1982 .