Determining the Topology of Real Algebraic Surfaces

An algorithm is proposed to determine the topology of an implicit real algebraic surface in ℝ3. The algorithm consists of three steps: surface projection, projection curve topology determination and surface patches composition. The algorithm provides a curvilinear wireframe of the surface and the surface patches of the surface determined by the curvilinear wireframe, which have the same topology as the surface. Most of the surface patches are curvilinear polygons. Some examples are used to show that our algorithm is effective.

[1]  John Hart Morse Theory for Implicit Surface Modeling , 1997, VisMath.

[2]  Chandrajit L. Bajaj,et al.  Tracing surface intersections , 1988, Comput. Aided Geom. Des..

[3]  Michael Garland,et al.  Fair morse functions for extracting the topological structure of a surface mesh , 2004, ACM Trans. Graph..

[4]  S. Basu,et al.  Algorithms in real algebraic geometry , 2003 .

[5]  Marisa E. Campbell,et al.  SIGGRAPH 2004 , 2004, INTR.

[6]  H. Hong An efficient method for analyzing the topology of plane real algebraic curves , 1996 .

[7]  S. Basu,et al.  Algorithms in Real Algebraic Geometry (Algorithms and Computation in Mathematics) , 2006 .

[8]  Stefan Arnborg,et al.  Algebraic decomposition of regular curves , 1986, SYMSAC '86.

[9]  Elmar Schömer,et al.  Computing a 3-dimensional cell in an arrangement of quadrics: exactly and actually! , 2001, SCG '01.

[10]  Laureano González-Vega,et al.  An Improved Upper Complexity Bound for the Topology Computation of a Real Algebraic Plane Curve , 1996, J. Complex..

[11]  Bernard Mourrain,et al.  Computing the Topology of Three-Dimensional Algebraic Curves , 2005 .

[12]  C. Hoffmann Algebraic curves , 1988 .

[13]  J. Hart,et al.  Fair morse functions for extracting the topological structure of a surface mesh , 2004, SIGGRAPH 2004.

[14]  T. Sakkalis The topological configuration of a real algebraic curve , 1991, Bulletin of the Australian Mathematical Society.

[15]  Dinesh Manocha,et al.  Efficient and exact manipulation of algebraic points and curves , 2000, Comput. Aided Des..

[16]  Laureano González-Vega,et al.  Efficient topology determination of implicitly defined algebraic plane curves , 2002, Comput. Aided Geom. Des..

[17]  Patrizia M. Gianni,et al.  Algorithms to compute the topology of orientable real algebraic surfaces , 2003, J. Symb. Comput..

[18]  Scott McCallum,et al.  A Polynomial-Time Algorithm for the Topological Type of a Real Algebraic Curve , 1984, J. Symb. Comput..

[19]  W. Massey A basic course in algebraic topology , 1991 .

[20]  Jeremy Johnson,et al.  Algorithms for polynomial real root isolation , 1992 .

[21]  Xiao-Shan Gao,et al.  Rational quadratic approximation to real algebraic curves , 2004, Comput. Aided Geom. Des..

[22]  Chandrajit L. Bajaj,et al.  Spline Approximations of Real Algebraic Surfaces , 1997, J. Symb. Comput..

[23]  C. Traverso,et al.  Shape determination for real curves and surfaces , 1983, ANNALI DELL UNIVERSITA DI FERRARA.

[24]  John C. Hart,et al.  Guaranteeing the topology of an implicit surface polygonization for interactive modeling , 1997, SIGGRAPH Courses.

[25]  George E. Collins,et al.  Cylindrical Algebraic Decomposition I: The Basic Algorithm , 1984, SIAM J. Comput..