Aromatic Oligoamide Foldamers

Aromatic oligoamide foldamers possess a high potential for mimicking the secondary structures of biopolymers. These oligomers are efficiently designed, easy to synthesize, and allow one to reach a wide range of stable folded states. The aryl−amide bond rotation can be restricted through specific attractive and repulsive interactions between the amide and the other functional groups at the ortho position on the aryl moiety. The overall conformation of an oligomer results from the simple linear combination of the local conformational preferences at each amide bond. Thus, the curvature of the oligomeric strand may be tuned from strictly linear to highly bent, giving rise to helices of controllable diameter and extended linear conformations. Conformational rearrangements such as helical−linear strand transitions may be induced upon changing the local conformational preference of aryl−amide bonds. These oligomers also aggregate in various ways, such as stacks of discs, face-to-face hydrogen-bonded linear dimers, or entwined double helices. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004)

[1]  B. Imperiali,et al.  Uniquely folded mini-protein motifs. , 2008, The journal of peptide research : official journal of the American Peptide Society.

[2]  S. Zimmerman,et al.  Complexation-Induced Unfolding of Heterocyclic Ureas: A Hydrogen-Bonded, Sheetlike Heterodimer , 2000 .

[3]  Y. Hamuro,et al.  Oligoanthranilamides. Non-Peptide Subunits That Show Formation of Specific Secondary Structure , 1996 .

[4]  Bing Gong,et al.  A new class of folding oligomers: Crescent oligoamides [4] , 2000 .

[5]  Alan E. Rowan,et al.  Helical Molecular Programming , 1998 .

[6]  J. Leger,et al.  Aromatic δ-Peptides , 2003 .

[7]  I. Huc,et al.  Role of lactam vs. lactim tautomers in 2(1H)-pyridone catalysis of aromatic nucleophilic substitution , 1998 .

[8]  C. Hunter,et al.  A Binary Quinone Receptor , 1992 .

[9]  J. Leger,et al.  Hydroxy-substituted oligopyridine dicarboxamide helical foldamers. , 2002, Chemical communications.

[10]  Katsuhiro Maeda,et al.  Memory of macromolecular helicity assisted by interaction with achiral small molecules , 1999, Nature.

[11]  Huang,et al.  Synthesis and structure of intramolecularly hydrogen bonded dendrons , 2000, Organic letters.

[12]  Jeffrey S. Moore,et al.  Foldamer-Based Molecular Recognition , 2000 .

[13]  J. Malone,et al.  Intermolecular interactions in the crystal chemistry of N,N'-diphenylisophthalamide, pyridine-2,6-dicarboxylic acid bisphenylamide, and related compounds , 1997 .

[14]  O. Prakash,et al.  METALLOHELICES : EFFECTS OF WEAK INTERACTIONS ON HELICAL MORPHOLOGY , 1995 .

[15]  Ivan Huc,et al.  Protonation-induced transition between two distinct helical conformations of a synthetic oligomer via a linear intermediate. , 2003, Angewandte Chemie.

[16]  Z. Urbańczyk-Lipkowska,et al.  Solution and solid-state studies on the molecular conformation of mono- and disubstituted pyridine amidoesters: the role of characteristic CH…O and NH…O interactions , 1999 .

[17]  K. Pattabiraman,et al.  An efficient, scalable synthesis of the molecular transporter octaarginine via a segment doubling strategy. , 2001, Organic letters.

[18]  J. Lehn,et al.  Helical molecular programming: folding of oligopyridine-dicarboxamides into molecular single helices. , 2001, Chemistry.

[19]  Jorge Becerril,et al.  Design and application of an alpha-helix-mimetic scaffold based on an oligoamide-foldamer strategy: antagonism of the Bak BH3/Bcl-xL complex. , 2003, Angewandte Chemie.

[20]  J. Rebek,et al.  Molecular recognition of adenine : role of geometry, electronic effects and rotational restrictions , 1994 .

[21]  D. Langs,et al.  Three-dimensional structure at 0.86 A of the uncomplexed form of the transmembrane ion channel peptide gramicidin A. , 1988, Science.

[22]  Mihail Barboiu,et al.  Dynamic chemical devices: Modulation of contraction/extension molecular motion by coupled-ion binding/pH change-induced structural switching , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[23]  D. Sathyanarayana,et al.  1H and 13C NMR spectra of some unsymmetric N,N-dipyridyl ureas: spectral assignments and molecular conformation , 1997 .

[24]  R. Goddard,et al.  Fine Tuning of the Cation Affinity of Artificial Receptors Based on Cyclic Peptides by Intramolecular Conformational Control , 2001 .

[25]  Thomas M. Garrett,et al.  Hydrogen Bonding in Catechoylamides , 1992 .

[26]  S. A. Hatcher,et al.  ‘Locking’ dendrimer conformation through metal coordination , 2003 .

[27]  B Gong,et al.  Stable three-center hydrogen bonding in a partially rigidified structure. , 2001, Chemistry.

[28]  P. Dervan,et al.  Fmoc solid phase synthesis of polyamides containing pyrrole and imidazole amino acids. , 2001, Organic letters.

[29]  Bing Gong,et al.  Energetics and cooperativity in three-center hydrogen bonding interactions. II. Intramolecular hydrogen bonding systems , 2001 .

[30]  F. Vögtle,et al.  Dendrimers: From Design to Application-A Progress Report. , 1999, Angewandte Chemie.

[31]  Fröhlich,et al.  A Molecular Knot with Twelve Amide Groups-One-Step Synthesis, Crystal Structure, Chirality Extracts were presented during a talk at the Universität Düsseldorf on January 11, 2000. We thank Dr. Christian Seel and Dr. Rudolf Hartmann for suggestions and measurements. , 2000, Angewandte Chemie.

[32]  B. Hudson,et al.  Crystallographic and molecular mechanics calculations on the anti-tumor drugs N-[(2-dimethylamino)ethyl]-and N-[(2-dimethyl-amino)butyl]-9-aminoacridine-4-carboxamides and their dications: implications for models of DNA-binding. , 1987, Journal of biomolecular structure & dynamics.

[33]  Carsten Schmuck,et al.  Molecules with helical structure: how to build a molecular spiral staircase. , 2003, Angewandte Chemie.

[34]  Matthew J. Mio,et al.  A field guide to foldamers. , 2001, Chemical reviews.

[35]  R. J. Doerksen,et al.  De novo design of biomimetic antimicrobial polymers , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[36]  J. Lehn,et al.  Helical molecular programming: supramolecular double helices by dimerization of helical oligopyridine-dicarboxamide strands. , 2001, Chemistry.

[37]  D. Fairlie,et al.  Conformational control by thiazole and oxazoline rings in cyclic octapeptides of marine origin. Novel macrocyclic chair and boat conformations , 1996 .

[38]  M. Mazik,et al.  Hydrogen-bonding motifs in the crystals of secondary diamides with 2-amino-6-methyl- and 2,6-diaminopyridine subunits , 1999 .

[39]  J. Leger,et al.  Solid state and solution conformation of 2-pyridinecarboxylic acid hydrazides: a new structural motif for foldamers , 2003 .

[40]  A. J. Shaka,et al.  AN ARTIFICIAL BETA -SHEET COMPRISING A MOLECULAR SCAFFOLD, A BETA -STRAND MIMIC, AND A PEPTIDE STRAND , 1996 .

[41]  T. E. Baroni,et al.  Synthesis and structure of chiral 2,6-bis[(2-carbamoylphenyl)carbamoyl]pyridine ligands , 1998 .

[42]  Y. Hamuro,et al.  Novel Folding Patterns in a Family of Oligoanthranilamides: Non-Peptide Oligomers That Form Extended Helical Secondary Structures , 1997 .

[43]  C. Pelizzi,et al.  Crystal and molecular structure of 2,6‐diacetylpyridine bis(picolinoylhydrazone) hemihydrate , 1979 .

[44]  S. Gellman,et al.  Parallel Sheet Secondary Structure in β‐Peptides , 2003 .

[45]  C. Vicent,et al.  Molecular recognition and the design of solid state structures: protonation-induced conformational change and self-assembly of 2,6-diamidopyridinium phosphates , 1991 .

[46]  C. Nuckolls,et al.  Enforced stacking in crowded arenes. , 2001, Journal of the American Chemical Society.

[47]  E. W. Meijer,et al.  pi-Conjugated oligomers and polymers with a self-assembled ladder-like structure , 1996 .

[48]  Ivan Huc,et al.  Interconversion of single and double helices formed from synthetic molecular strands , 2000, Nature.

[49]  D. Seebach,et al.  β-Peptides: a surprise at every turn , 1997 .

[50]  Harold L. Ickes,et al.  A NEW APPROACH FOR THE DESIGN OF SUPRAMOLECULAR RECOGNITION UNITS : HYDROGEN-BONDED MOLECULAR DUPLEXES , 1999 .

[51]  D. Sathyanarayana,et al.  1H and 13C NMR investigations of N,N′-bis(2- and 3-pyridinyl)-2,6-pyridine dicarboxamides , 1997 .

[52]  J. G. Vinter,et al.  Noncovalent Assembly of [2]Rotaxane Architectures. , 2001, Angewandte Chemie.

[53]  J. Parquette,et al.  Folding Dendrons: The Development of Solvent-, Temperature-, and Generation-Dependent Chiral Conformational Order in Intramolecularly Hydrogen-Bonded Dendrons , 2000 .