Erbium doping of crystalline and amorphous silicon for optoelectronic applications
暂无分享,去创建一个
S. U. Campisano | A. Polman | S. Lombardo | G. Franzò | G. N. Hoven | S. Coffa | F. Priolo
[1] S. U. Campisano,et al. Erbium in oxygen-doped silicon: Optical excitation , 1995 .
[2] S. U. Campisano,et al. Erbium in oxygen‐doped silicon: Electroluminescence , 1995 .
[3] S. U. Campisano,et al. Optical and structural properties of semi-insulating polycrystalline silicon thin films , 1995 .
[4] Polman,et al. Temperature dependence and quenching processes of the intra-4f luminescence of Er in crystalline Si. , 1994, Physical review. B, Condensed matter.
[5] Alberto Carnera,et al. Room‐temperature electroluminescence from Er‐doped crystalline Si , 1994 .
[6] A. Polman,et al. ERBIUM IN CRYSTAL SILICON : SEGREGATION AND TRAPPING DURING SOLID PHASE EPITAXY OF AMORPHOUS SILICON , 1994 .
[7] F. Priolo,et al. Electrical and optical characterization of Er‐implanted Si: The role of impurities and defects , 1993 .
[8] F. Priolo,et al. Optical activation and excitation mechanisms of Er implanted in Si. , 1993, Physical review. B, Condensed matter.
[9] Salvatore Lombardo,et al. Room‐temperature luminescence from Er‐implanted semi‐insulating polycrystalline silicon , 1993 .
[10] L. Canham. Progress Toward Crystalline-Silicon-Based Light-Emitting Diodes , 1993 .
[11] A. Polman,et al. Optical doping of silicon with erbium by ion implantation , 1993 .
[12] Lombardo,et al. Electrical and structural properties of semi-insulating polycrystalline silicon thin films. , 1993, Physical review. B, Condensed matter.
[13] A. Polman,et al. Incorporation of high concentrations of erbium in crystal silicon , 1993 .
[14] P. H. Citrin,et al. Local structure of 1.54‐μm‐luminescence Er3+ implanted in Si , 1992 .
[15] R. C. Kistler,et al. Optical doping of waveguide materials by MeV Er implantation , 1991 .
[16] Jurgen Michel,et al. Impurity enhancement of the 1.54‐μm Er3+ luminescence in silicon , 1991 .
[17] Jurgen Michel,et al. The electrical and defect properties of erbium‐implanted silicon , 1991 .
[18] Tadamasa Kimura,et al. Impact excitation of the erbium‐related 1.54 μm luminescence peak in erbium‐doped InP , 1991 .
[19] Kenichi Ishii,et al. Experimental Fabrication of XMOS Transistors Using Lateral Solid-Phase Epitaxy of CVD Silicon Films , 1990 .
[20] M. Salvi,et al. Optical Activation of Er3+ Implanted in Silicon by Oxygen Impurities , 1990 .
[21] A. Axmann,et al. 1.54‐μm luminescence of erbium‐implanted III‐V semiconductors and silicon , 1983 .
[22] W. Knolle,et al. Hydrogen in semi‐insulating polycrystalline silicon films , 1980 .
[23] H. Grubin. The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.
[24] S. Sato,et al. An advanced MOS-IC process technology using local oxidation ot oxygen-doped polysilicon films , 1978, IEEE Journal of Solid-State Circuits.
[25] G. A. Baraff,et al. Maximum Anisotropy Approximation for Calculating Electron Distributions; Application to High Field Transport in Semiconductors , 1964 .
[26] S. U. Campisano,et al. Doping of semi-insulating polycrystalline silicon by B, P, and As implantation and diffusion , 1994 .
[27] F. Priolo,et al. Er Luminescence in Si: A Critical Balance between Optical Activity and Pumping Efficiency , 1993 .
[28] T. Matsushita,et al. Semi-Insulating Polycrystalline-Silicon (SIPOS) Passivation Technology , 1975 .
[29] N. Mott,et al. Electronic Processes In Non-Crystalline Materials , 1940 .