Statistical inference approach to time-delay interferometry for gravitational-wave detection

The future space-based gravitational wave observatory laser interferometer space antenna (LISA) will consist of a constellation of three spacecraft in a triangular constellation, connected by laser interferometers with 2.5 million-kilometer arms. Among other challenges, the success of the mission strongly depends on the quality of the cancellation of laser frequency noise, whose power lies 8 orders of magnitude above the gravitational signal. The standard technique to perform noise removal is time-delay interferometry (TDI). TDI constructs linear combinations of delayed phasemeter measurements tailored to cancel laser noise terms. Previous work has demonstrated the relationship between TDI and principal component analysis (PCA). We build on this idea to develop an extension of TDI based on a model likelihood that directly depends on the phasemeter measurements. Assuming stationary Gaussian noise, we decompose the measurement covariance using PCA in the frequency domain. We obtain a comprehensive and compact framework that we call PCI for ``principal component interferometry'' and show that it provides an optimal description of the LISA data analysis problem.

[1]  Jean-Baptiste Bayle,et al.  Clock-jitter reduction in LISA time-delay interferometry combinations , 2020, Physical Review D.

[2]  S. Babak,et al.  TDI-infinity: time-delay interferometry without delays , 2020, 2008.12343.

[3]  T. Littenberg,et al.  Global analysis of the gravitational wave signal from Galactic binaries , 2020, Physical Review D.

[4]  P. K. Dahal,et al.  Review of pulsar timing array for gravitational wave research , 2020, Journal of Astrophysics and Astronomy.

[5]  M. Muratore,et al.  Revisitation of time delay interferometry combinations that suppress laser noise in LISA , 2020, Classical and Quantum Gravity.

[6]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[7]  T. Canton,et al.  Gravitational-wave parameter estimation with gaps in LISA: A Bayesian data augmentation method , 2019, Physical Review D.

[8]  A. Petiteau,et al.  Effect of filters on the time-delay interferometry residual laser noise for LISA , 2018, Physical Review D.

[9]  G. Nelemans,et al.  LISA verification binaries with updated distances from Gaia Data Release 2 , 2018, Monthly Notices of the Royal Astronomical Society.

[10]  Y. Wang,et al.  Exploring the sensitivity of next generation gravitational wave detectors , 2016, 1607.08697.

[11]  I. Mandel,et al.  Dynamic temperature selection for parallel tempering in Markov chain Monte Carlo simulations , 2015, 1501.05823.

[12]  Michele Leighton A principal component approach to space-based gravitational wave astronomy , 2016 .

[13]  Samuel Hinton,et al.  ChainConsumer , 2016, J. Open Source Softw..

[14]  Travis E. Oliphant,et al.  Guide to NumPy , 2015 .

[15]  Massimo Tinto,et al.  Time-Delay Interferometry , 2003, Living reviews in relativity.

[16]  Derek K. Jones,et al.  Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light , 2013, Nature Photonics.

[17]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[18]  K. Danzmann,et al.  TDI and clock noise removal for the split interferometry configuration of LISA , 2012 .

[19]  L. G. Boté,et al.  Laser Interferometer Space Antenna , 2012 .

[20]  Peter D. Hoff,et al.  A Covariance Regression Model , 2011, 1102.5721.

[21]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[22]  Chien-Cheng Tseng,et al.  Design of fractional delay filter using discrete Fourier transform interpolation method , 2010, Signal Process..

[23]  T. Littenberg,et al.  Tests of Bayesian model selection techniques for gravitational wave astronomy , 2007, 0704.1808.

[24]  Joachim Kopp EFFICIENT NUMERICAL DIAGONALIZATION OF HERMITIAN 3 × 3 MATRICES , 2006 .

[25]  D. Nychka,et al.  Covariance Tapering for Interpolation of Large Spatial Datasets , 2006 .

[26]  G. Woan,et al.  Principal component analysis for LISA: The time delay interferometry connection , 2006 .

[27]  A. Vecchio,et al.  The LISA verification binaries , 2006, astro-ph/0605227.

[28]  J. Vinet,et al.  Algebraic approach to time-delay data analysis for orbiting LISA , 2004 .

[29]  Wensheng Guo,et al.  Multivariate spectral analysis using Cholesky decomposition , 2004 .

[30]  Robert Eliot Spero,et al.  Postprocessed time-delay interferometry for LISA , 2004, gr-qc/0406106.

[31]  S. Larson,et al.  The LISA optimal sensitivity , 2002, gr-qc/0209039.

[32]  J. Armstrong,et al.  Time-delay analysis of LISA gravitational data: elimination spacecraft motion effects , 2000 .

[33]  J. Armstrong,et al.  Time-Delay Interferometry for Space-based Gravitational Wave Searches , 1999 .

[34]  J. Timmer,et al.  On generating power law noise. , 1995 .