Statistical inference approach to time-delay interferometry for gravitational-wave detection
暂无分享,去创建一个
J. Thorpe | J. Slutsky | J. Baker | Q. Baghi | Quentin Baghi
[1] Jean-Baptiste Bayle,et al. Clock-jitter reduction in LISA time-delay interferometry combinations , 2020, Physical Review D.
[2] S. Babak,et al. TDI-infinity: time-delay interferometry without delays , 2020, 2008.12343.
[3] T. Littenberg,et al. Global analysis of the gravitational wave signal from Galactic binaries , 2020, Physical Review D.
[4] P. K. Dahal,et al. Review of pulsar timing array for gravitational wave research , 2020, Journal of Astrophysics and Astronomy.
[5] M. Muratore,et al. Revisitation of time delay interferometry combinations that suppress laser noise in LISA , 2020, Classical and Quantum Gravity.
[6] Joel Nothman,et al. SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.
[7] T. Canton,et al. Gravitational-wave parameter estimation with gaps in LISA: A Bayesian data augmentation method , 2019, Physical Review D.
[8] A. Petiteau,et al. Effect of filters on the time-delay interferometry residual laser noise for LISA , 2018, Physical Review D.
[9] G. Nelemans,et al. LISA verification binaries with updated distances from Gaia Data Release 2 , 2018, Monthly Notices of the Royal Astronomical Society.
[10] Y. Wang,et al. Exploring the sensitivity of next generation gravitational wave detectors , 2016, 1607.08697.
[11] I. Mandel,et al. Dynamic temperature selection for parallel tempering in Markov chain Monte Carlo simulations , 2015, 1501.05823.
[12] Michele Leighton. A principal component approach to space-based gravitational wave astronomy , 2016 .
[13] Samuel Hinton,et al. ChainConsumer , 2016, J. Open Source Softw..
[14] Travis E. Oliphant,et al. Guide to NumPy , 2015 .
[15] Massimo Tinto,et al. Time-Delay Interferometry , 2003, Living reviews in relativity.
[16] Derek K. Jones,et al. Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light , 2013, Nature Photonics.
[17] Daniel Foreman-Mackey,et al. emcee: The MCMC Hammer , 2012, 1202.3665.
[18] K. Danzmann,et al. TDI and clock noise removal for the split interferometry configuration of LISA , 2012 .
[19] L. G. Boté,et al. Laser Interferometer Space Antenna , 2012 .
[20] Peter D. Hoff,et al. A Covariance Regression Model , 2011, 1102.5721.
[21] Gaël Varoquaux,et al. The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.
[22] Chien-Cheng Tseng,et al. Design of fractional delay filter using discrete Fourier transform interpolation method , 2010, Signal Process..
[23] T. Littenberg,et al. Tests of Bayesian model selection techniques for gravitational wave astronomy , 2007, 0704.1808.
[24] Joachim Kopp. EFFICIENT NUMERICAL DIAGONALIZATION OF HERMITIAN 3 × 3 MATRICES , 2006 .
[25] D. Nychka,et al. Covariance Tapering for Interpolation of Large Spatial Datasets , 2006 .
[26] G. Woan,et al. Principal component analysis for LISA: The time delay interferometry connection , 2006 .
[27] A. Vecchio,et al. The LISA verification binaries , 2006, astro-ph/0605227.
[28] J. Vinet,et al. Algebraic approach to time-delay data analysis for orbiting LISA , 2004 .
[29] Wensheng Guo,et al. Multivariate spectral analysis using Cholesky decomposition , 2004 .
[30] Robert Eliot Spero,et al. Postprocessed time-delay interferometry for LISA , 2004, gr-qc/0406106.
[31] S. Larson,et al. The LISA optimal sensitivity , 2002, gr-qc/0209039.
[32] J. Armstrong,et al. Time-delay analysis of LISA gravitational data: elimination spacecraft motion effects , 2000 .
[33] J. Armstrong,et al. Time-Delay Interferometry for Space-based Gravitational Wave Searches , 1999 .
[34] J. Timmer,et al. On generating power law noise. , 1995 .