Contribution of the oxygen reduction reaction to the electrochemical cathodic partial reaction for Mg-Al-Ca solid solutions

[1]  S. Virtanen,et al.  Respirometric in Situ Methods for Real-Time Monitoring of Corrosion Rates: Part III. Deconvolution of Electrochemical Polarization Curves , 2023, Journal of The Electrochemical Society.

[2]  N. Birbilis,et al.  Operando Kinetics of Hydrogen Evolution and Elemental Dissolution Ii a Time Resolved Mass-Charge Balance During the Anodic Dissolution of Magnesium with Variable Iron Content , 2023, SSRN Electronic Journal.

[3]  D. Snihirova,et al.  Micro-alloyed Mg-Ca: Corrosion susceptibility to heating history and a plain problem-solving approach , 2023, Journal of Magnesium and Alloys.

[4]  C. Motz,et al.  The effect of time dependent native oxide surface conditions on the electrochemical corrosion resistance of Mg and Mg-Al-Ca alloys , 2022, Corrosion Science.

[5]  S. Lamaka,et al.  Exploring the contribution of oxygen reduction reaction to Mg corrosion by modeling assisted local analysis , 2022, Journal of Magnesium and Alloys.

[6]  S. Korte-Kerzel,et al.  Metallographic preparation methods for the Mg based system Mg-Al-Ca and its Laves phases , 2022, Materials Characterization.

[7]  K. S. Kumar,et al.  Construction and analysis of surface phase diagrams to describe segregation and dissolution behavior of Al and Ca in Mg alloys , 2022, Physical Review Materials.

[8]  M.P. Bruns,et al.  Coupling Respirometric HER and ORR Monitoring with Electrochemical Measurements , 2022, Electrochimica Acta.

[9]  A. Erbe,et al.  Limiting Current Density of Oxygen Reduction under Ultrathin Electrolyte Layers: From the Micrometer Range to Monolayers , 2021 .

[10]  S. Lamaka,et al.  High rate oxygen reduction reaction during corrosion of ultra-high-purity magnesium , 2020, npj Materials Degradation.

[11]  S. Virtanen,et al.  Respirometric In Situ Methods for Real-Time Monitoring of Corrosion Rates: Part II. Immersion , 2020, Journal of The Electrochemical Society.

[12]  B. Gault,et al.  Different Photostability of BiVO4 in Near-pH-Neutral Electrolytes , 2020, ACS applied energy materials.

[13]  G. Frankel,et al.  Hydrogen evolution on bare Mg surfaces using the scratched electrode technique , 2020 .

[14]  Jiangfeng Song,et al.  Latest research advances on magnesium and magnesium alloys worldwide , 2020, Journal of Magnesium and Alloys.

[15]  S. Virtanen,et al.  Editors’ Choice—Respirometric in Situ Methods for Real-Time Monitoring of Corrosion Rates: Part I. Atmospheric Corrosion , 2020, Journal of The Electrochemical Society.

[16]  C. Scheu,et al.  Evaluation of EELS spectrum imaging data by spectral components and factors from multivariate analysis , 2017, Microscopy.

[17]  N. Birbilis,et al.  Fundamentals and advances in magnesium alloy corrosion , 2017 .

[18]  F. Pan,et al.  A Review on Casting Magnesium Alloys: Modification of Commercial Alloys and Development of New Alloys , 2016 .

[19]  O. Gharbi,et al.  On the effect of Fe concentration on Mg dissolution and activation studied using atomic emission spectroelectrochemistry and scanning electrochemical microscopy , 2016 .

[20]  A. Atrens,et al.  The influence of pH on the corrosion rate of high-purity Mg, AZ91 and ZE41 in bicarbonate buffered Hanks' solution , 2015 .

[21]  M. Dargusch,et al.  Review of Recent Developments in the Field of Magnesium Corrosion , 2015 .

[22]  G. Frankel,et al.  Corrosion mechanism and hydrogen evolution on Mg , 2015 .

[23]  T. Abbott Magnesium: Industrial and Research Developments Over the Last 15 Years , 2015 .

[24]  O. Gharbi,et al.  Mg Dissolution in Phosphate and Chloride Electrolytes: Insight into the Mechanism of the Negative Difference Effect , 2015 .

[25]  G. Frankel,et al.  On the evidence for univalent Mg , 2015 .

[26]  P. Tabeling,et al.  A novel approach to on-line measurement of gas evolution kinetics: Application to the negative difference effect of Mg in chloride solution , 2014 .

[27]  N. Birbilis,et al.  Evolution of hydrogen at dissolving magnesium surfaces , 2013 .

[28]  J. Kish,et al.  Analysis of the surface film formed on Mg by exposure to water using a FIB cross-section and STEM–EDS , 2012 .

[29]  V. Balasubramanian,et al.  Influence of pH value, chloride ion concentration and immersion time on corrosion rate of friction stir welded AZ61A magnesium alloy weldments , 2012 .

[30]  W. Badawy,et al.  Effect of Al content on the corrosion behavior of Mg–Al alloys in aqueous solutions of different pH , 2010 .

[31]  J. Światowska,et al.  The anodic dissolution of Mg in NaCl and Na2SO4 electrolytes by atomic emission spectroelectrochemistry , 2010 .

[32]  L. Hihara,et al.  Corrosion of continuous alumina-fibre reinforced Al–2 wt.% Cu–T6 metal–matrix composite in 3.15 wt.% NaCl solution , 2010 .

[33]  M. Schlesinger,et al.  Corrosion of magnesium and its alloys , 2009 .

[34]  L. Jeurgens,et al.  Initial oxide film growth on Mg-based MgAl alloys at room temperature. , 2008 .

[35]  G. Song,et al.  Understanding Magnesium Corrosion—A Framework for Improved Alloy Performance , 2003 .

[36]  Noboru Masuko,et al.  Morphology and Structure of Oxide Films Formed on Magnesium by Exposure to Air and Water , 1995 .

[37]  M. Pourbaix Atlas of Electrochemical Equilibria in Aqueous Solutions , 1974 .

[38]  K. Mittal Magnesium , 1921, Reactions Weekly.

[39]  F. Schäfer,et al.  The Role of Native Oxides on the Corrosion Mechanism of Laves Phases in Mg–Al–Ca Composites , 2021 .

[40]  G. Frankel,et al.  Anomalous hydrogen evolution on AZ31, AZ61 and AZ91 magnesium alloys in unbuffered sodium chloride solution , 2019, Corrosion Science.

[41]  K. Ogle,et al.  Communication—Hydrogen Evolution and Elemental Dissolution by Combined Gravimetric Method and Atomic Emission Spectroelectrochemistry , 2019, Journal of the Electrochemical Society.