Biogenic origin of intergrown Mo-sulphide- and carbonaceous matter in Lower Cambrian black shales (Zunyi Formation, southern China)

[1]  Jinghong Yang,et al.  Trace- and rare-earth element geochemistry and Pb–Pb dating of black shales and intercalated Ni–Mo–PGE–Au sulfide ores in Lower Cambrian strata, Yangtze Platform, South China , 2006 .

[2]  C. Brondino,et al.  Bacterial nitrate reductases: Molecular and biological aspects of nitrate reduction. , 2006, Journal of inorganic biochemistry.

[3]  T. Siddique,et al.  Characterization of sediment bacteria involved in selenium reduction. , 2006, Bioresource technology.

[4]  T. Vígh,et al.  Geochemical Aspect of Chemolithoautotrophic Bacterial Activity in the Role of Black Shale Hosted Mn Mineralization, Jurassic Age, Hungary, Europe , 2006 .

[5]  W. Braida,et al.  Adsorption of molybdate and tetrathiomolybdate onto pyrite and goethite: effect of pH and competitive anions. , 2006, Chemosphere.

[6]  M. Perraki,et al.  Raman micro-spectroscopy on diamond, graphite and other carbon polymorphs from the ultrahigh-pressure metamorphic Kimi Complex of the Rhodope Metamorphic Province, NE Greece , 2006 .

[7]  J. Rouzaud,et al.  Maturation grade of coals as revealed by Raman spectroscopy: progress and problems. , 2005, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[8]  S. Jackson,et al.  Black shales, organic matter, ore genesis and hydrocarbon generation in the Paleoproterozoic Franceville Series, Gabon , 2005 .

[9]  R. Hazen Genesis: Rocks, Minerals, and the Geochemical Origin of Life , 2005 .

[10]  B. Orberger,et al.  Nitrogen and carbon partitioning in diagenetic and hydrothermal minerals from Paleozoic Black Shales, (Selwyn Basin, Yukon Territories, Canada). , 2005 .

[11]  R. Wirth,et al.  Focused ion beam (FIB): A novel technology for advanced application of micro- and nanoanalysis in geosciences and applied mineralogy , 2004 .

[12]  G. Helz,et al.  Capture of molybdenum in pyrite-forming sediments: role of ligand-induced reduction by polysulfides , 2004 .

[13]  B. Orberger,et al.  Se, As, Mo, Ag, Cd, In, Sb, Pt, Au, Tl, Re traces in biogenic and abiogenic sulfides from Black Shales (Selwyn Basin, Yukon territories, Canada): A nuclear microprobe study , 2003 .

[14]  Jean-Noël Rouzaud,et al.  On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy. , 2003, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[15]  B. Orberger,et al.  Biogenic and abiogenic hydrothermal sulfides: controls of rare metal distribution in black shales (Yukon Territories, Canada) , 2003 .

[16]  D. Ma,et al.  Re-Os Dating of Polymetallic Ni-Mo-PGE-Au Mineralization in Lower Cambrian Black Shales of South China and Its Geologic Significance , 2003 .

[17]  J. Slack,et al.  Paleozoic and Mesozoic silica-rich seawater: Evidence from hematitic chert (jasper) deposits , 2003 .

[18]  B. Bostick,et al.  Differential adsorption of molybdate and tetrathiomolybdate on pyrite (FeS2). , 2003, Environmental science & technology.

[19]  J. Rouzaud,et al.  Raman spectra of carbonaceous material in metasediments: a new geothermometer , 2002 .

[20]  L. Balistrieri,et al.  Suboxic trace metal geochemistry in the Eastern Tropical North Pacific , 2002 .

[21]  J. Carignan,et al.  Determination of Selenium Concentration in Sixty Five Reference Materials for Geochemical Analysis by GFAAS after Separation with Thiol Cotton , 2001 .

[22]  S. Sowerby,et al.  Biogenicity of silicified microbes from a hydrothermal system: relevance to the search for evidence of life on earth and other planets , 2001 .

[23]  E. Berthoumieux,et al.  The Pierre Süe Laboratory nuclear microprobe as a multi-disciplinary analysis tool , 2001 .

[24]  J. Penner‐Hahn,et al.  A C/MoS2 mixed-layer phase (MoSC) occurring in metalliferous black shales from southern China, and new data on jordisite , 2001 .

[25]  Yuan-long Zhao,et al.  Submarine-hydrothermal exhalative ore layers in black shales from South China and associated fossils — insights into a Lower Cambrian facies and bio-evolution , 2001 .

[26]  G. Helz,et al.  Reconstructing the rise of recent coastal anoxia; molybdenum in Chesapeake Bay sediments , 2001 .

[27]  R. Anderson,et al.  Authigenic molybdenum formation in marine sediments: A link to pore water sulfide in the Santa Barbara Basin , 2000 .

[28]  G. Sheng,et al.  Organic geochemistry of paleokarst-hosted uranium deposits, South China , 2000 .

[29]  J. Murowchick,et al.  Sedimentary exhalative nickel-molybdenum ores in South China , 1999 .

[30]  R. Oremland,et al.  Simultaneous Reduction of Nitrate and Selenate by Cell Suspensions of Selenium-Respiring Bacteria , 1999, Applied and Environmental Microbiology.

[31]  G. Frey,et al.  Raman and resonance Raman investigation of MoS 2 nanoparticles , 1999 .

[32]  S. Emerson,et al.  The geochemistry of redox sensitive trace metals in sediments , 1999 .

[33]  D. Z. Piper,et al.  Molybdenum accumulation in Cariaco basin sediment over the past 24 k.y.: A record of water-column anoxia and climate , 1999 .

[34]  B. Cesare,et al.  Fluid-present anatexis of metapelites at El Joyazo (SE Spain): constraints from Raman spectroscopy of graphite , 1999 .

[35]  G. Cowie,et al.  A 36 kyr geochemical record from the Sea of Japan of organic matter flux variations and changes in intermediate water oxygen concentrations , 1999 .

[36]  Wolfgang M. Heckl,et al.  Self-Assembly at the Prebiotic Solid−Liquid Interface: Structures of Self-Assembled Monolayers of Adenine and Guanine Bases Formed on Inorganic Surfaces , 1998 .

[37]  D. Z. Piper,et al.  Inorganic geochemical indicators of glacial-interglacial changes in productivity and anoxia on the California continental margin , 1997 .

[38]  Yuzhuang Sun,et al.  Metal accumulation during and after deposition of the Kupferschiefer from the Sangerhausen Basin, Germany , 1997 .

[39]  S. Calvert,et al.  Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition , 1996 .

[40]  R. Pattrick,et al.  Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence , 1996 .

[41]  M. Adams,et al.  Tungsten in biological systems. , 1996, FEMS microbiology reviews.

[42]  Robert Huber,et al.  Crystal Structure of the Xanthine Oxidase-Related Aldehyde Oxido-Reductase from D. gigas , 1995, Science.

[43]  I. L. Singer,et al.  Low-friction, high-endurance, ion-beam-deposited Pb-Mo-S coatings , 1995 .

[44]  T. Hoaki,et al.  Dense Community of Hyperthermophilic Sulfur-Dependent Heterotrophs in a Geothermally Heated Shallow Submarine Biotope near Kodakara-Jima Island, Kagoshima, Japan , 1995, Applied and environmental microbiology.

[45]  K. Shelton,et al.  Cyclic variations of sulfur isotopes in Cambrian stratabound Ni-Mo- ( PGE-Au) ores of southern China , 1994 .

[46]  R. Feely,et al.  Trace metals in hydrothermal solutions from Cleft segment on the southern Juan de Fuca Ridge , 1994 .

[47]  D. Kadko,et al.  Compositions, growth mechanisms, and temporal relations of hydrothermal sulfide-sulfate-silica chimneys at the northern Cleft segment, Juan de Fuca Ridge , 1994 .

[48]  D. Rees,et al.  Nitrogenase and biological nitrogen fixation. , 1994, Biochemistry.

[49]  J. Pašava Anoxic sediments—an important environment for PGE; An overview , 1993 .

[50]  S. Calvert,et al.  Geochemistry of Recent oxic and anoxic marine sediments: Implications for the geological record , 1993 .

[51]  M. Hannington,et al.  Relict hydrothermal zones in the TAG Hydrothermal Field, Mid‐Atlantic Ridge 26°N, 45°W , 1993 .

[52]  J. Pasteris,et al.  Structural characterization of kerogens to granulite-facies graphite; applicability of Raman microprobe spectroscopy , 1993 .

[53]  D. C. Rees,et al.  Crystallographic structure and functional implications of the nitrogenase molybdenum–iron protein from Azotobacter vinelandii , 1992, Nature.

[54]  M. Glascock,et al.  Gold and platinum in shales with evidence against extraterrestrial sources of metals , 1992 .

[55]  W. Püttmann,et al.  The possible role of organic matter in transport and accumulation of metals exemplified at the Permian Kupferschiefer formation , 1991 .

[56]  Yang,et al.  Raman study and lattice dynamics of single molecular layers of MoS2. , 1991, Physical review. B, Condensed matter.

[57]  C. Nansheng,et al.  Ni-Mo-PGE-Au-rich ores in Chinese black shales and speculations on possible analogues in the United States , 1991 .

[58]  B. Orberger,et al.  Proton-microprobe analyses of palladium and selenium in NiCu-sulfides , 1991 .

[59]  H. Brumsack Geochemistry of recent TOC-rich sediments from the Gulf of California and the Black Sea , 1989 .

[60]  R. Oremland,et al.  Selenate Reduction to Elemental Selenium by Anaerobic Bacteria in Sediments and Culture: Biogeochemical Significance of a Novel, Sulfate-Independent Respiration , 1989, Applied and environmental microbiology.

[61]  M. Glascock,et al.  A review of the origins of metal-rich Pennsylvanian black shales, central U.S.A., with an inferred role for basinal brines , 1989 .

[62]  G. Rau,et al.  15N/14N variations in Cretaceous Atlantic sedimentary sequences: implication for past changes in marine nitrogen biogeochemistry , 1987 .

[63]  M. Glikson,et al.  Trace elements in oil shales, their source and organic association with particular reference to Australian deposits☆ , 1985 .

[64]  P. Buseck,et al.  Conversion of carbonaceous material to graphite during metamorphism , 1985 .

[65]  Jean-Noël Rouzaud,et al.  Characterization of carbonaceous materials by correlated electron and optical microscopy and Raman microspectroscopy , 1985 .

[66]  M. Bender,et al.  Tracers in the Sea , 1984 .

[67]  J. W. Hosterman,et al.  Chemical and mineralogical analysis of devonian black-shale samples from Martin County, Kentucky; Carroll and Washington counties, Ohio; Wise County, Virginia; and Overton County, Tennessee, U.S.A. , 1982 .

[68]  J. Disnar Etude expérimentale de la fixation de métaux par un matériau sédimentaire actuel d'origine algaire—II. Fixation ‘in vitro’ de UO2+2, Cu2+, Ni2+, Zn2+, Pb2+, Co2+, Mn2+, ainsi que de VO−3, MoO2−4 et GeO2−3 , 1981 .

[69]  R. Nemanich,et al.  First- and second-order Raman scattering from finite-size crystals of graphite , 1979 .

[70]  P. Hamilton,et al.  Rare-earth abundances in chondritic meteorites , 1978 .

[71]  C. S. Wang,et al.  Second order Raman spectrum of MoS2 , 1974 .

[72]  K. Turekian,et al.  Molybdenum in marine deposits , 1973 .

[73]  K. Bertine The deposition of molybdenum in anoxic waters , 1972 .

[74]  T. Wieting,et al.  Infrared and Raman Studies of Long-Wavelength Optical Phonons in Hexagonal Mo S 2 , 1971 .

[75]  F. Tuinstra,et al.  Raman Spectrum of Graphite , 1970 .

[76]  J. D. Vine,et al.  Geochemistry of black shale deposits; a summary report , 1970 .

[77]  K. H. Wedepohl Handbook of Geochemistry , 1969 .

[78]  B. Orberger,et al.  Rare metal sequestration and mobility in mineralized black shales from the Zunyi region, South China , 2005 .

[79]  Jiuling Li,et al.  Platinum-group elements in Cambrian black shale in southern China: Differential enrichment of platinum and palladium , 2005 .

[80]  F. Bierlein,et al.  Mineral Deposit Research: Meeting the Global Challenge , 2005 .

[81]  R. Caspi,et al.  Bacterially mediated mineral formation; insights into manganese(II) oxidation from molecular genetic and biochemical studies , 1997 .

[82]  J. Morgan,et al.  Rhenium and osmium isotopes in black shales and Ni-Mo-PGE-rich sulfide layers, Yukon Territory, Canada, and Hunan and Guizhou provinces, China , 1994 .

[83]  N. Everall,et al.  THE EFFECT OF LASER-INDUCED HEATING UPON THE VIBRATIONAL RAMAN SPECTRA OF GRAPHITES AND CARBON FIBRES , 1991 .

[84]  M. Pawlikowski,et al.  Two-brine model of the genesis of strata-bound Zechstein deposits (Kupferschiefer type), Poland , 1986 .

[85]  A. Stacy,et al.  Raman spectra of IVB and VIB transition metal disulfides using laser energies near the absorption edges , 1985 .

[86]  M. Szilágyi SORPTION OF MOLYBDENUM BY HUMUS PREPARATIONS. , 1967 .