Physics and applications of laser diode chaos

This Review Article provides an overview of chaos in laser diodes by surveying experimental achievements in the area and explaining the theory behind the phenomenon. The fundamental physics underpinning laser diode chaos and also the opportunities for harnessing it for potential applications are discussed. The availability and ease of operation of laser diodes, in a wide range of configurations, make them a convenient testbed for exploring basic aspects of nonlinear and chaotic dynamics. It also makes them attractive for practical tasks, such as chaos-based secure communications and random number generation. Avenues for future research and development of chaotic laser diodes are also identified.

[1]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[2]  Leon O. Chua,et al.  Spread Spectrum Communication Through Modulation of Chaos , 1993 .

[3]  M. Torrent,et al.  Controlling the leader-laggard dynamics in delay-synchronized lasers. , 2007, Chaos.

[4]  Inverse synchronization in semiconductor laser diodes , 2001 .

[5]  Yoshiro Takiguchi,et al.  Experimental observation of complete chaos synchronization in semiconductor lasers , 2002 .

[6]  Laurent Larger,et al.  Routes to chaos and multiple time scale dynamics in broadband bandpass nonlinear delay electro-optic oscillators. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  Junji Ohtsubo,et al.  Semiconductor Lasers : Stability , Instability and Chaos , 2013 .

[8]  Laurent Larger,et al.  Chaos in wavelength with a feedback tunable laser diode , 1998 .

[9]  Atsushi Uchida,et al.  Fast random bit generation with bandwidth-enhanced chaos in semiconductor lasers. , 2010, Optics express.

[10]  C. R. Mirasso,et al.  Analysis of optical chaos synchronization in frequency-detuned external-cavity VCSELs , 1999 .

[11]  Fan-Yi Lin,et al.  Nonlinear dynamics of a semiconductor laser with delayed negative optoelectronic feedback , 2003 .

[12]  K. A. Shore,et al.  Chaotic message broadcasting using DFB laser diodes , 2004 .

[13]  William L. Ditto,et al.  DYNAMICS BASED COMPUTATION , 1998 .

[14]  Kent D. Choquette,et al.  Stable polarization self-modulation in vertical-cavity surface-emitting lasers , 1998 .

[15]  S. Residori,et al.  Spatiotemporal chaotic localized state in liquid crystal light valve experiments with optical feedback. , 2013, Physical review letters.

[16]  Delphine Wolfersberger,et al.  Extreme events in time-delayed nonlinear optics. , 2013, Optics letters.

[17]  Y. C. Chen,et al.  Subharmonic bifurcations and irregular pulsing behavior of modulated semiconductor lasers , 1985 .

[18]  Ulrich Parlitz,et al.  Hyperchaotic dynamics and synchronization of external-cavity semiconductor lasers , 1998 .

[19]  Hübner,et al.  Homoclinic and heteroclinic chaos in a single-mode laser. , 1988, Physical review letters.

[20]  Jia-Ming Liu,et al.  Synchronized chaotic optical communications at high bit rates , 2002 .

[21]  Yoshinobu Mitsuhashi,et al.  Return-beam-induced oscillations in self-coupled semiconductor lasers , 1976 .

[22]  David S. Wu,et al.  Direct Selection and Amplification of Individual Narrowly Spaced Optical Comb Modes Via Injection Locking: Design and Characterization , 2013, Journal of Lightwave Technology.

[23]  Anbang Wang,et al.  Chaotic Correlation Optical Time Domain Reflectometer Utilizing Laser Diode , 2008, IEEE Photonics Technology Letters.

[24]  J. Kurths,et al.  Delay-induced synchrony in complex networks with conjugate coupling. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Thomas Erneux,et al.  Stable microwave oscillations due to external-cavity-mode beating in laser diodes subject to optical feedback , 2002 .

[26]  M. Sciamanna,et al.  Polarization synchronization in unidirectionally coupled vertical-cavity surface-emitting lasers with orthogonal optical injection. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Mork,et al.  Route to chaos and competition between relaxation oscillations for a semiconductor laser with optical feedback. , 1990, Physical review letters.

[28]  Hugo Thienpont,et al.  Deterministic polarization chaos from a laser diode , 2013 .

[29]  S. Deligiannidis,et al.  Implementation of 140 Gb/s true random bit generator based on a chaotic photonic integrated circuit. , 2010, Optics express.

[30]  Eckehard Schöll,et al.  Broadband chaos generated by an optoelectronic oscillator. , 2009, Physical review letters.

[31]  B. Pompe,et al.  Permutation entropy: a natural complexity measure for time series. , 2002, Physical review letters.

[32]  Xiao-Zhou Li,et al.  Heterodyne Random Bit Generation Using an Optically Injected Semiconductor Laser in Chaos , 2013, IEEE Journal of Quantum Electronics.

[33]  F. Arecchi,et al.  Experimental evidence of subharmonic bifurcations, multistability, and turbulence in a Q-switched gas laser , 1982 .

[34]  A.G. Vladimirov,et al.  Numerical Study of Dynamical Regimes in a Monolithic Passively Mode-Locked Semiconductor Laser , 2009, IEEE Journal of Quantum Electronics.

[35]  D S Citrin,et al.  Spectrally efficient multiplexing of chaotic light. , 2010, Optics letters.

[36]  M. Kuntz,et al.  Stability of the mode-locked regime in quantum dot lasers , 2007 .

[37]  Min Won Lee,et al.  Demonstration of a chaotic optical message relay using DFB laser diodes , 2006, IEEE Photonics Technology Letters.

[38]  C. K. Asawa,et al.  Stimulated Optical Emission in Fluorescent Solids. II. Spectroscopy and Stimulated Emission in Ruby , 1961 .

[39]  Gregg M. Gallatin,et al.  Nonlinear laser dynamics : from quantum dots to cryptography , 2011 .

[40]  I. Kanter,et al.  An optical ultrafast random bit generator , 2010 .

[41]  Daan Lenstra,et al.  The dynamical complexity of optically injected semiconductor lasers , 2005 .

[42]  Miro Erkintalo,et al.  Instabilities, breathers and rogue waves in optics , 2014, Nature Photonics.

[43]  H. Kawaguchi Optical bistability and chaos in a semiconductor laser with a saturable absorber , 1984 .

[44]  D. Rontani,et al.  Multiplexed encryption using chaotic systems with multiple stochastic-delayed feedbacks. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  M. Sciamanna,et al.  Nonlinear polarization dynamics in directly modulated vertical-cavity surface-emitting lasers. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  C. R. Mirasso,et al.  ON/OFF phase shift keying for chaos-encrypted communication using external-cavity semiconductor lasers. (Invited paper) , 2002 .

[47]  X. Qi,et al.  Photonic Microwave Applications of the Dynamics of Semiconductor Lasers , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[48]  Ingo Fischer,et al.  Fast Random Bit Generation Using a Chaotic Laser: Approaching the Information Theoretic Limit , 2013, IEEE Journal of Quantum Electronics.

[49]  Vassilios Kovanis,et al.  Period‐doubling route to chaos in a semiconductor laser subject to optical injection , 1994 .

[50]  G. Duan,et al.  Self-pulsation in multielectrode distributed feedback lasers , 1995, IEEE Photonics Technology Letters.

[51]  P. Colet,et al.  Synchronization of chaotic semiconductor lasers: application to encoded communications , 1996, IEEE Photonics Technology Letters.

[52]  Junji Ohtsubo,et al.  Synchronization of feedback-induced chaos in semiconductor lasers by optical injection , 2002 .

[53]  Ingo Fischer,et al.  Dynamics of a semiconductor laser with polarization-rotated feedback and its utilization for random bit generation. , 2011, Optics letters.

[54]  J P Toomey,et al.  Mapping the dynamic complexity of a semiconductor laser with optical feedback using permutation entropy. , 2014, Optics express.

[55]  Ulrich Parlitz,et al.  Experimental Observation of Synchronization and Anti-Synchronization of Chaotic Low-Frequency-fluctuations in External cavity semiconductor Lasers , 2001, Int. J. Bifurc. Chaos.

[56]  Hübner,et al.  Dimensions and entropies of chaotic intensity pulsations in a single-mode far-infrared NH3 laser. , 1989, Physical review. A, General physics.

[57]  J. Yorke,et al.  Period Three Implies Chaos , 1975 .

[58]  Zheng-Mao Wu,et al.  Direct generation of broadband chaos by a monolithic integrated semiconductor laser chip. , 2013, Optics express.

[59]  I Kanter,et al.  Ultrahigh-speed random number generation based on a chaotic semiconductor laser. , 2009, Physical review letters.

[60]  Cristina Masoller,et al.  Quantifying the statistical complexity of low-frequency fluctuations in semiconductor lasers with optical feedback , 2010 .

[61]  K. Alan Shore,et al.  Unlocking Dynamical Diversity: Optical Feedback Effects on Semiconductor Lasers , 2005 .

[62]  K. Ikeda Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system , 1979 .

[63]  Igor L. Krestnikov,et al.  Chaotic emission and tunable self-sustained pulsations in a two-section Fabry–Perot quantum dot laser , 2011 .

[64]  Roy,et al.  Experimental synchronization of chaotic lasers. , 1994, Physical review letters.

[65]  F. T. Arecchi,et al.  Instabilities in lasers with an injected signal , 1985 .

[66]  Jacob B. Khurgin,et al.  Comparative analysis of spasers, vertical-cavity surface-emitting lasers and surface-plasmon-emitting diodes , 2014, Nature Photonics.

[67]  S. Pethel,et al.  High-precision ranging using a chaotic laser pulse train , 2001 .

[68]  K. Shore,et al.  Two-mode chaos synchronization using a multimode external-cavity laser diode and two single-mode laser diodes , 2005, Journal of Lightwave Technology.

[69]  Y. Pomeau,et al.  Intermittent transition to turbulence in dissipative dynamical systems , 1980 .

[70]  Romain Modeste Nguimdo,et al.  Fast random bits generation based on a single chaotic semiconductor ring laser. , 2012, Optics express.

[71]  Shuo Tang,et al.  Chaotic pulsing and quasi-periodic route to chaos in a semiconductor laser with delayed opto-electronic feedback , 2001 .

[72]  Minoru Yamada,et al.  Experimental Characterization of the Feedback Induced Noise in Self-Pulsing Lasers , 1999 .

[73]  Dynamics of Semiconductor Lasers with Optical Feedback from Photorefractive Phase Conjugate Mirror , 1999 .

[74]  M. Sciamanna,et al.  Super-harmonic self-pulsations from a time-delayed phase-conjugate optical system , 2014 .

[75]  H Thienpont,et al.  Physical random bit generation from chaotic solitary laser diode. , 2014, Optics express.

[76]  U. Keller Recent developments in compact ultrafast lasers , 2003, Nature.

[77]  Cristina Masoller,et al.  Deterministic optical rogue waves. , 2011, Physical review letters.

[78]  L. Micu Superselection rule against the existence of real colour excited states , 1974 .

[79]  F Henneberger,et al.  All-optical noninvasive chaos control of a semiconductor laser. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[80]  K. A. Shore,et al.  Optimal operating conditions for external cavity semiconductor laser optical chaos communication system , 2012 .

[81]  San Miguel M,et al.  Light-polarization dynamics in surface-emitting semiconductor lasers. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[82]  M. C. Soriano,et al.  Complex photonics: Dynamics and applications of delay-coupled semiconductors lasers , 2013 .

[83]  W. Chow,et al.  Using chaos for remote sensing of laser radiation. , 2009, Optics express.

[84]  K A Shore,et al.  Demonstration of optical synchronization of chaotic external-cavity laser diodes. , 1999, Optics letters.

[85]  C. Masoller Anticipation in the synchronization of chaotic semiconductor lasers with optical feedback. , 2001, Physical review letters.

[86]  R. Dong,et al.  A generator for unique quantum random numbers based on vacuum states , 2010 .

[87]  D S Citrin,et al.  Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback. , 2007, Optics letters.

[88]  Daan Lenstra,et al.  Filtered optical feedback induced frequency dynamics in semiconductor lasers. , 2004, Physical review letters.

[89]  Mukai,et al.  New route to optical chaos: Successive-subharmonic-oscil- lation cascade in a semiconductor laser coupled to an external cavity. , 1985, Physical review letters.

[90]  D. Lenstra,et al.  Coherence collapse in single-mode semiconductor lasers due to optical feedback , 1985, IEEE Journal of Quantum Electronics.

[91]  R. Toral,et al.  Analysis and characterization of the hyperchaos generated by a semiconductor laser subject to a delayed feedback loop , 2005, IEEE Journal of Quantum Electronics.

[92]  Glorieux,et al.  Observation of chaos in a frequency-modulated CO2 laser. , 1985, Physical review letters.

[93]  M Radziunas,et al.  Nonlinear dynamics of semiconductor lasers with active optical feedback. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[94]  William L. Ditto,et al.  Implementation of nor Gate by a Chaotic Chua's Circuit , 2003, Int. J. Bifurc. Chaos.

[95]  P Colet,et al.  Digital communication with synchronized chaotic lasers. , 1994, Optics letters.

[96]  P. Grassberger,et al.  Characterization of Strange Attractors , 1983 .

[97]  Mitchell J. Feigenbaum,et al.  The onset spectrum of turbulence , 1979 .

[98]  N. Yu,et al.  Nonlinear dynamics of coupled transverse modes in quantum cascade lasers , 2010 .

[99]  Laurent Larger,et al.  Chaos-based communications at high bit rates using commercial fibre-optic links , 2005, Nature.

[100]  T. Yamazaki,et al.  Fast Random Number Generation With Bandwidth-Enhanced Chaotic Semiconductor Lasers at 8$\,\times\,$ 50 Gb/s , 2012, IEEE Photonics Technology Letters.

[101]  A. Uchida,et al.  Fast physical random bit generation with chaotic semiconductor lasers , 2008 .

[102]  Leon O. Chua,et al.  Transmission of Digital signals by Chaotic Synchronization , 1992, Chua's Circuit.

[103]  M. C. Soriano,et al.  Characterizing the Hyperchaotic Dynamics of a Semiconductor Laser Subject to Optical Feedback Via Permutation Entropy , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[104]  H. F. Liu,et al.  Nonlinear dynamics of a directly modulated 1.55 mu m InGaAsP distributed feedback semiconductor laser , 1993 .

[105]  Jia-Ming Liu,et al.  Chaotic radar using nonlinear laser dynamics , 2004 .

[106]  Kenichi Arai,et al.  Chaos laser chips with delayed optical feedback using a passive ring waveguide. , 2011, Optics express.

[107]  S. Sivaprakasam,et al.  Message encoding and decoding using chaotic external-cavity diode lasers , 2000, IEEE Journal of Quantum Electronics.

[108]  Ingo Fischer,et al.  Dynamics of semiconductor lasers subject to delayed optical feedback: the short cavity regime. , 2001 .

[109]  K. Shore,et al.  Experimental Study of Time-Delay Signatures in Vertical-Cavity Surface-Emitting Lasers Subject to Double-Cavity Polarization-Rotated Optical Feedback , 2014, Journal of Lightwave Technology.

[110]  Raul Vicente,et al.  Zero-lag long-range synchronization via dynamical relaying. , 2006, Physical review letters.

[111]  Hermann Haken,et al.  Analogy between higher instabilities in fluids and lasers , 1975 .

[112]  Sang-Kook Han,et al.  10 Gbit/s all-optical composite logic gates with XOR, NOR, OR and NAND functions using SOA-MZI structures , 2006 .

[113]  Chang-Hee Lee,et al.  Period doubling and chaos in a directly modulated laser diode , 1985 .

[114]  Atsushi Uchida,et al.  Fast nondeterministic random-bit generation using on-chip chaos lasers , 2011 .

[115]  H. Weinfurter,et al.  A fast and compact quantum random number generator , 1999, quant-ph/9912118.

[116]  Hugo Thienpont,et al.  Nonlinear dynamics accompanying polarization switching in vertical-cavity surface-emitting lasers with orthogonal optical injection , 2006 .

[117]  B. Mandelbrot How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension , 1967, Science.

[118]  Roy,et al.  Communication with chaotic lasers , 1998, Science.

[119]  Minoru Yamada,et al.  A theoretical analysis of self-sustained pulsation phenomena in narrow-stripe semiconductor lasers , 1993 .

[120]  A Argyris,et al.  Photonic integrated device for chaos applications in communications. , 2008, Physical review letters.

[121]  Ingo Fischer,et al.  Estimation of delay times from a delayed optical feedback laser experiment , 1998 .

[122]  R S Tucker,et al.  Green Optical Communications—Part I: Energy Limitations in Transport , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[123]  C. Henry Theory of the linewidth of semiconductor lasers , 1982 .

[124]  Michael J. Adams,et al.  Optoelectronic realisation of NOR logic gate using chaotic two-section lasers , 2005 .

[125]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[126]  Sze-Chun Chan,et al.  Random bit generation using an optically injected semiconductor laser in chaos with oversampling. , 2012, Optics letters.

[127]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[128]  Mindaugas Radziunas,et al.  40 GHz Mode-Locked Semiconductor Lasers: Theory, Simulations and Experiment , 2006 .

[129]  H Thienpont,et al.  Optical feedback induces polarization mode hopping in vertical-cavity surface-emitting lasers. , 2003, Optics letters.

[130]  Ingo Fischer,et al.  Dynamics of semiconductor lasers subject to delayed optical feedback: the short cavity regime. , 2001, Physical review letters.

[131]  G. Agrawal,et al.  Spatio-temporal characteristics of filamentation in broad-area semiconductor lasers: experimental results , 1998, IEEE Photonics Technology Letters.

[132]  F. Takens,et al.  On the nature of turbulence , 1971 .