Mathematical modeling of ceramic bond bridges in grinding wheels

Ceramic-bonded grinding wheels with cubic boron nitride (CBN) as grain material belong to the most efficient grinding tools available. They feature a high hardness combined with a high thermal stability and the applicability to grinding ferrous materials. However, the appropriate volumetric composition of grain and bonding material is an expensive and time-consuming process based on experience. Our objective is the mathematical modeling of grinding wheel structures for the prediction of compositions which fulfill given grinding requirements such that using trial and error methods can be avoided. For this purpose, we focus on a three-dimensional element of a grinding wheel which we call volumetric structure element. In this paper, we briefly describe our overall modeling approach and present in detail how we model the ceramic bond. For the latter, we combine analytical and discrete calculations, embedded into an iterative algorithm which ensures to meet bond volume fractions prescribed by grinding wheel specifications.

[1]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[2]  Fritz Klocke,et al.  Mathematical Modeling of Ceramic-Bonded Grinding Wheel Structures , 2015 .

[3]  M. J. Jackson,et al.  Modelling of fracture wear in vitrified cBN grinding wheels , 2007 .

[4]  Robert Bauer,et al.  A survey of recent grinding wheel topography models , 2006 .

[5]  David P. Dobkin,et al.  The quickhull algorithm for convex hulls , 1996, TOMS.

[6]  W. Rowe,et al.  Handbook of Machining with Grinding Wheels , 2006 .

[7]  Ichiro Inasaki,et al.  Modelling and Simulation of Grinding Processes , 1992 .

[8]  Ekkard Brinksmeier,et al.  Advances in Modeling and Simulation of Grinding Processes , 2006 .

[9]  Bernd Gärtner,et al.  Fast and Robust Smallest Enclosing Balls , 1999, ESA.

[10]  W. Pietsch,et al.  Haftkraft, Kapillardruck, Flüssigkeitsvolumen und Grenzwinkel einer Flüssigkeitsbrücke zwischen zwei Kugeln , 1967 .

[11]  Leif Kobbelt,et al.  OpenMesh: A Generic and Efficient Polygon Mesh Data Structure , 2002 .

[12]  Andreas Menzel,et al.  Determination of the Thermal Load Distribution in Internal Traverse Grinding using a Geometric-Kinematic Simulation , 2015 .

[13]  David Bommes,et al.  OpenVolumeMesh - A Versatile Index-Based Data Structure for 3D Polytopal Complexes , 2012, IMR.

[14]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[15]  Fritz Klocke,et al.  Manufacturing Processes 2: Grinding, Honing, Lapping , 2009 .

[16]  Christer Ericson,et al.  Real-Time Collision Detection , 2004 .

[17]  Hans-Peter Seidel,et al.  A General Framework for Mesh Decimation , 1998, Graphics Interface.

[18]  Leif Kobbelt,et al.  OpenFlipper: An Open Source Geometry Processing and Rendering Framework , 2010, Curves and Surfaces.

[19]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[20]  Masahiro Higuchi,et al.  Fractal modeling method for 3D structure of vitrified-bonded wheel , 2007 .

[21]  Hang Si,et al.  TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator , 2015, ACM Trans. Math. Softw..