Stem volume of tropical forests from polarimetric radar

In this study, we investigated the potential of polarimetric synthetic aperture radar (PolSAR) data for the estimation of stem volume in tropical forests. We used calibrated L-band, high incidence angle data from the airborne system SAR-R99B, acquired over an experimental area in the Tapajós National Forest, Pará, Brazil. To evaluate the potential of PolSAR data for this application we used regression analysis, in which first-order models were fit to predict stem volume per hectare, as determined from field measurements. Unlike previous studies in tropical forests, the set of potential explanatory variables included a series of PolSAR attributes based on phase information, in addition to power measurements. Model selection techniques based on coefficient of determination (R 2) and mean square error (MSE) identified several useful subsets of explanatory variables for stem volume estimation, including backscattering coefficient in HH polarization, cross-polarized ratio, HH-VV phase difference, polarimetric coherence, and the volume scatter component of the Freeman decomposition. Evaluation of the selected models indicated that PolSAR data can be used to quantify stem volume in the study site with a root mean square error (RMSE) of about 20–29 m3 ha−1, corresponding to 8–12% of the mean stem volume. External validation using independent data showed average prediction errors of less than 14%. Saturation effects in measured versus modelled volume were not observed up to volumes of 308 m3 ha−1 (biomasses of ∼357 Mg ha−1). However, no formal assessment of saturation was possible due to limitations of the volume range of the dataset.

[1]  J. Pulliainen,et al.  Radar-based forest biomass estimation , 1994 .

[2]  A. Veríssimo,et al.  Fatos Florestais da Amazônia 2003 , 2003 .

[3]  Richard K. Moore,et al.  Microwave Remote Sensing, Active and Passive , 1982 .

[4]  Paul E. Berry,et al.  Flora da Reserva Ducke , 2000 .

[5]  M. Keller,et al.  Biomass estimation in the Tapajos National Forest, Brazil: Examination of sampling and allometric uncertainties , 2001 .

[6]  Thuy Le Toan,et al.  Relating forest biomass to SAR data , 1992, IEEE Trans. Geosci. Remote. Sens..

[7]  Q. Ketterings,et al.  Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests , 2001 .

[8]  P. Amaral,et al.  Manejo florestal comunitário: processos e aprendizagens na Amazônia brasileira e na América Latina , 2005 .

[9]  C. Schmullius,et al.  Assessment of stand‐wise stem volume retrieval in boreal forest from JERS‐1 L‐band SAR backscatter , 2006 .

[10]  Floyd M. Henderson,et al.  Radar detection of wetland ecosystems: a review , 2008 .

[11]  Jan Askne,et al.  Potential of SAR for forest bole volume estimation , 1994 .

[12]  Shaun Quegan,et al.  A unified algorithm for phase and cross-talk calibration of polarimetric data-theory and observations , 1994, IEEE Trans. Geosci. Remote. Sens..

[13]  A. Lugo,et al.  Estimating biomass and biomass change of tropical forests , 1997 .

[14]  J. Santos,et al.  A growth model for secondary forest in Central Amazonia , 2005 .

[15]  Michael H. Kutner Applied Linear Statistical Models , 1974 .

[16]  João Roberto dos Santos,et al.  Composição florística e estrutura de uma unidade de manejo florestal sustentável na Floresta Nacional do Tapajós, Pará , 2008 .

[17]  João Roberto dos Santos,et al.  Savanna and tropical rainforest biomass estimation and spatialization using JERS-1 data , 2002 .

[18]  Campbell O. Webb,et al.  Regional and phylogenetic variation of wood density across 2456 Neotropical tree species. , 2006, Ecological applications : a publication of the Ecological Society of America.

[19]  J. Chambers,et al.  Tree allometry and improved estimation of carbon stocks and balance in tropical forests , 2005, Oecologia.

[20]  R. Xingu ABOVEGROUND BIOMASS ESTIMATES FOR TROPICAL MOIST FORESTS OF THE BRAZILIAN AMAZON , 2004 .

[21]  J Richards,et al.  Computer processing of remotely-sensed images: An introduction , 1990 .

[22]  Paul J. Curran,et al.  JERS-1/SAR backscatter and its relationship with biomass of regenerating forests , 2000 .

[23]  Calibração preliminar dos dados SAR polarimétricos em banda L do sensor R99B do CENSIPAM , 2007 .

[24]  I. Brown,et al.  Uncertainty in the biomass of Amazonian forests: An example from Rondônia, Brazil , 1995 .

[25]  S. Shapiro,et al.  A Comparative Study of Various Tests for Normality , 1968 .

[26]  J. Fransson Estimation of stem volume in boreal forests using ERS-1 C- and JERS-1 L-band SAR data , 1999 .

[27]  V. Barnett,et al.  Applied Linear Statistical Models , 1975 .

[28]  Yoshio Yamaguchi,et al.  On the basic principles of radar polarimetry: the target characteristic polarization state theory of Kennaugh, Huynen's polarization fork concept, and its extension to the partially polarized case , 1991 .

[29]  Eric Pottier,et al.  A review of target decomposition theorems in radar polarimetry , 1996, IEEE Trans. Geosci. Remote. Sens..

[30]  P. W. Vachon,et al.  Synthetic aperture radar calibration using reference reflectors , 1990 .

[31]  M. Honzak,et al.  Tropical Forest Biomass Density Estimation Using JERS-1 SAR: Seasonal Variation, Confidence Limits, and Application to Image Mosaics , 1998 .

[32]  F. Ulaby,et al.  Handbook of radar scattering statistics for terrain , 1989 .

[33]  A. Veríssimo,et al.  A Expansão madeireira na Amazônia: Impactos e perspectivas para o desenvolvimento sustentável no Pará , 2002 .

[34]  M. Hopkins FLORA DA RESERVA DUCKE, AMAZONAS, BRASIL , 2005 .

[35]  M. M. Goulding,et al.  The SIVAM airborne SAR system , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[36]  D. Cox,et al.  An Analysis of Transformations , 1964 .

[37]  C. Tucker,et al.  NASA’s Global Orthorectified Landsat Data Set , 2004 .

[38]  R. Houghton,et al.  Aboveground Forest Biomass and the Global Carbon Balance , 2005 .

[39]  José N. Silva,et al.  EQUAÇÕES DE VOLUME PARA A FLORESTA NACIONAL DO TAPAJÓS (Volume equations for the Tapajós National Forest) , 1984 .

[40]  João Roberto dos Santos,et al.  Airborne P-band SAR applied to the aboveground biomass studies in the Brazilian tropical rainforest , 2003 .

[41]  J. Hyyppä,et al.  Accuracy comparison of various remote sensing data sources in the retrieval of forest stand attributes , 2000 .

[42]  Stephen L. Durden,et al.  A three-component scattering model for polarimetric SAR data , 1998, IEEE Trans. Geosci. Remote. Sens..

[43]  Jack F. Paris,et al.  Radar remote sensing of forest and wetland ecosystems in the Central American tropics , 1994 .