Parametrically driven pure-Kerr temporal solitons in a chip-integrated microcavity

The discovery that externally-driven nonlinear optical resonators can sustain ultrashort pulses corresponding to coherent optical frequency combs has enabled landmark advances in applications from telecommunications to sensing. The main research focus has hitherto been on resonators with purely cubic (Kerr-type) nonlinearity that are externally-driven with a monochromatic continuous wave laser -- in such systems, the solitons manifest themselves as unique attractors whose carrier frequency coincides with that of the external driving field. Recent experiments have, however, shown that a qualitatively different type of temporal soliton can arise via parametric down-conversion in resonators with simultaneous quadratic and cubic nonlinearity. In contrast to conventional solitons in pure-Kerr resonators, these parametrically driven solitons come in two different flavours with opposite phases, and they are spectrally centred at half of the frequency of the driving field. Here, we theoretically predict and experimentally demonstrate that parametrically driven solitons can also arise in resonators with pure Kerr nonlinearity under conditions of bichromatic driving. In this case, the solitons arise through four-wave mixing mediated phase-sensitive amplification, come with two distinct phases, and have a carrier frequency in between the two external driving fields. Our experiments are performed in an integrated silicon nitride microcavity, and we observe frequency comb spectra in good agreement with theoretical predictions. In addition to representing a fundamental discovery of a new type of temporal dissipative soliton, our results constitute the first unequivocal realisation of parametrically driven soliton frequency combs in a microcavity platform compatible with foundry-ready mass fabrication.

[1]  K. Srinivasan,et al.  Two-Dimensional Nonlinear Mixing Between a Dissipative Kerr Soliton and Continuous Waves for a Higher-Dimension Frequency Comb , 2023, 2303.10026.

[2]  K. Srinivasan,et al.  Integrated Buried Heaters for Efficient Spectral Control of Air-Clad Microresonator Frequency Combs , 2022, APL Photonics.

[3]  P. McMahon,et al.  Ising machines as hardware solvers of combinatorial optimization problems , 2022, Nature Reviews Physics.

[4]  Hansuek Lee,et al.  Ultrastable microwave and soliton-pulse generation from fibre-photonic-stabilized microcombs , 2022, Nature communications.

[5]  Vincent Ng,et al.  Soliton linear-wave scattering in a Kerr microresonator , 2021, 2111.13275.

[6]  Bok Young Kim,et al.  Dynamic control of photon lifetime for quantum random number generation , 2021, Optica.

[7]  N. J. Engelsen,et al.  High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits , 2021, 2021 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC).

[8]  P. Andrekson,et al.  Overcoming the quantum limit of optical amplification in monolithic waveguides , 2021, Science advances.

[9]  C. Brès,et al.  Optically reconfigurable quasi-phase-matching in silicon nitride microresonators , 2021, Nature Photonics.

[10]  J. Vučković,et al.  Quantum optics of soliton microcombs , 2021, Nature Photonics.

[11]  Hansuek Lee,et al.  A squeezed quantum microcomb on a chip , 2021, Nature Communications.

[12]  K. Srinivasan,et al.  Ultra-broadband Kerr microcomb through soliton spectral translation , 2021, Nature Communications.

[13]  P. Sazio,et al.  Parametrically driven Kerr cavity solitons , 2021, Nature Photonics.

[14]  A. Boes,et al.  11 TOPS photonic convolutional accelerator for optical neural networks , 2021, Nature.

[15]  A. Matsko,et al.  All-optical dissipative discrete time crystals , 2020, Nature Communications.

[16]  S. Coen,et al.  Spontaneous symmetry breaking of dissipative optical solitons in a two-component Kerr resonator , 2020, Nature Communications.

[17]  A. Boes,et al.  Ultra-dense optical data transmission over standard fibre with a single chip source , 2020, Nature Communications.

[18]  H. Tang,et al.  Pockels soliton microcomb , 2020, Nature Photonics.

[19]  K. Srinivasan,et al.  Efficient photoinduced second-harmonic generation in silicon nitride photonics , 2020, Nature Photonics.

[20]  A. Matsko,et al.  Quantum diffusion of microcavity solitons , 2020, Nature Physics.

[21]  Shuangyou Zhang,et al.  Spectral extension and synchronization of microcombs in a single microresonator , 2020, Nature Communications.

[22]  Xuan Li,et al.  Parallel convolutional processing using an integrated photonic tensor core , 2021, Nature.

[23]  Erwan Lucas,et al.  Massively parallel coherent laser ranging using a soliton microcomb , 2019, Nature.

[24]  K. Srinivasan,et al.  Broadband resonator-waveguide coupling for efficient extraction of octave-spanning microcombs. , 2019, Optics letters.

[25]  T. Kippenberg,et al.  Ultralow-noise photonic microwave synthesis using a soliton microcomb-based transfer oscillator , 2019, Nature Communications.

[26]  S. Coen,et al.  Coexistence and Interactions between Nonlinear States with Different Polarizations in a Monochromatically Driven Passive Kerr Resonator. , 2019, Physical review letters.

[27]  Luke Theogarajan,et al.  An optical-frequency synthesizer using integrated photonics , 2018, Nature.

[28]  Michael L. Gorodetsky,et al.  Spatial multiplexing of soliton microcombs , 2018, Nature Photonics.

[29]  Scott A. Diddams,et al.  Searching for Exoplanets Using a Microresonator Astrocomb , 2018, Nature Photonics.

[30]  Miles H. Anderson,et al.  A microphotonic astrocomb , 2017, Nature Photonics.

[31]  R. Morandotti,et al.  Micro-combs: A novel generation of optical sources , 2017 .

[32]  K. Vahala,et al.  Soliton microcomb range measurement , 2017, Science.

[33]  A. Matsko,et al.  Optical lattice trap for Kerr solitons , 2017, 1704.00024.

[34]  S. Coen,et al.  Universal mechanism for the binding of temporal cavity solitons , 2017, 1703.10604.

[35]  S. Coen,et al.  Coexistence of multiple nonlinear states in a tristable passive kerr resonator , 2017, 1702.00782.

[36]  T. Hansson,et al.  Multiple four-wave mixing and Kerr combs in a bichromatically pumped nonlinear fiber ring cavity. , 2016, Optics letters.

[37]  M. Karpov,et al.  Breathing dissipative solitons in optical microresonators , 2016, Nature Communications.

[38]  T. Kippenberg,et al.  Microresonator-based solitons for massively parallel coherent optical communications , 2016, Nature.

[39]  S. Diddams,et al.  Soliton crystals in Kerr resonators , 2016, 1610.00080.

[40]  Michal Lipson,et al.  Quantum random number generator using a microresonator-based Kerr oscillator. , 2016, Optics letters.

[41]  Hiroki Takesue,et al.  10  GHz clock time-multiplexed degenerate optical parametric oscillators for a photonic Ising spin network. , 2016, Optics letters.

[42]  Steven A. Miller,et al.  Breather soliton dynamics in microresonators , 2016, Nature Communications.

[43]  Jens H. Schmid,et al.  Roadmap on silicon photonics , 2016 .

[44]  Yoshihisa Yamamoto,et al.  Large-scale Ising spin network based on degenerate optical parametric oscillators , 2016, Nature Photonics.

[45]  Michal Lipson,et al.  Dual-pumped degenerate Kerr oscillator in a silicon nitride microresonator. , 2015, Optics letters.

[46]  M. Gorodetsky,et al.  Dissipative Kerr solitons in optical microresonators , 2015, Science.

[47]  T. Hansson,et al.  Frequency comb generation beyond the Lugiato–Lefever equation: multi-stability and super cavity solitons , 2015, 1503.03274.

[48]  Y. Chembo Quantum dynamics of Kerr optical frequency combs below and above threshold: Spontaneous four-wave mixing, entanglement, and squeezed states of light , 2014, 1412.5700.

[49]  V. Brasch,et al.  Photonic chip–based optical frequency comb using soliton Cherenkov radiation , 2014, Science.

[50]  S. Wabnitz,et al.  Bichromatically pumped microresonator frequency combs , 2014, 1404.2792.

[51]  D. Skryabin,et al.  Soliton families and resonant radiation in a micro-ring resonator near zero group-velocity dispersion. , 2014, Optics express.

[52]  S. Coen,et al.  Ultraweak long-range interactions of solitons observed over astronomical distances , 2013, Nature Photonics.

[53]  S. Coen,et al.  Observation of dispersive-wave emission by temporal cavity solitons , 2013, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[54]  L. Gelens,et al.  Dynamics of one-dimensional Kerr cavity solitons. , 2013, Optics express.

[55]  G. J. Valcárcel,et al.  Phase-bistable Kerr cavity solitons and patterns , 2013 .

[56]  Miro Erkintalo,et al.  Universal scaling laws of Kerr frequency combs. , 2013, Optics letters.

[57]  T. Sylvestre,et al.  Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model. , 2012, Optics letters.

[58]  M. Gorodetsky,et al.  Temporal solitons in optical microresonators , 2012, Nature Photonics.

[59]  P. Andrekson,et al.  Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers , 2011 .

[60]  David J. Richardson,et al.  All-optical phase and amplitude regenerator for next-generation telecommunications systems , 2010 .

[61]  S. Coen,et al.  Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer , 2010 .

[62]  Jing Zhang,et al.  Phase-sensitive manipulations of a squeezed vacuum field in an optical parametric amplifier inside an optical cavity. , 2008, Physical review letters.

[63]  K. Vahala,et al.  Dynamical thermal behavior and thermal self-stability of microcavities , 2004, (CLEO). Conference on Lasers and Electro-Optics, 2005..

[64]  I. V. Barashenkov,et al.  Topography of attractors of the parametrically driven nonlinear Schro¨dinger equation , 1995 .

[65]  W. Kath,et al.  Long-term storage of a soliton bit stream by use of phase-sensitive amplification. , 1994, Optics letters.

[66]  S Wabnitz,et al.  Suppression of interactions in a phase-locked soliton optical memory. , 1993, Optics letters.

[67]  Marc Haelterman,et al.  Dissipative modulation instability in a nonlinear dispersive ring cavity , 1992 .

[68]  I. V. Barashenkov,et al.  Stability Diagram of the Phase-Locked Solitons in the Parametrically Driven, Damped Nonlinear Schrödinger Equation , 1991 .

[69]  John W. Miles,et al.  Parametrically excited solitary waves , 1984, Journal of Fluid Mechanics.

[70]  S. Radic,et al.  Phase-sensitive amplification in a fiber. , 2004, Optics express.

[71]  S. Radic,et al.  Two-pump fiber parametric amplifiers , 2003 .