Fifth-Order Hermite Targeted Essentially Non-oscillatory Schemes for Hyperbolic Conservation Laws

[1]  Jianxian Qiu,et al.  Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method II: Two dimensional case , 2005 .

[2]  Chang-Yeol Jung,et al.  Fine structures for the solutions of the two-dimensional Riemann problems by high-order WENO schemes , 2018, Adv. Comput. Math..

[3]  Wei Guo,et al.  Superconvergence of discontinuous Galerkin and local discontinuous Galerkin methods: Eigen-structure analysis based on Fourier approach , 2013, J. Comput. Phys..

[4]  Jianxian Qiu,et al.  Dimension-by-dimension moment-based central Hermite WENO schemes for directly solving Hamilton-Jacobi equations , 2017, Adv. Comput. Math..

[5]  Chi-Wang Shu,et al.  Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy , 2000 .

[6]  Yousef Hashem Zahran,et al.  Seventh order Hermite WENO scheme for hyperbolic conservation laws , 2016 .

[7]  Wai-Sun Don,et al.  An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws , 2008, J. Comput. Phys..

[8]  Jianxian Qiu,et al.  High-order central Hermite WENO schemes on staggered meshes for hyperbolic conservation laws , 2015, J. Comput. Phys..

[9]  Nikolaus A. Adams,et al.  Scale separation for implicit large eddy simulation , 2011, J. Comput. Phys..

[10]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[11]  Eleuterio F. Toro,et al.  Finite-volume WENO schemes for three-dimensional conservation laws , 2004 .

[12]  Lin Fu,et al.  A low-dissipation finite-volume method based on a new TENO shock-capturing scheme , 2019, Comput. Phys. Commun..

[13]  Vladimir A. Titarev,et al.  WENO schemes on arbitrary mixed-element unstructured meshes in three space dimensions , 2011, J. Comput. Phys..

[14]  Feng Zheng,et al.  Directly solving the Hamilton-Jacobi equations by Hermite WENO Schemes , 2016, J. Comput. Phys..

[15]  Yuan Liu,et al.  A Robust Reconstruction for Unstructured WENO Schemes , 2013, J. Sci. Comput..

[16]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[17]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[18]  S. Osher,et al.  Regular ArticleUniformly High Order Accurate Essentially Non-oscillatory Schemes, III , 1997 .

[19]  Dimitris Drikakis,et al.  WENO schemes for mixed-elementunstructured meshes , 2010 .

[20]  Jianxian Qiu,et al.  A conservative semi-Lagrangian HWENO method for the Vlasov equation , 2016, J. Comput. Phys..

[21]  Nikolaus A. Adams,et al.  Targeted ENO schemes with tailored resolution property for hyperbolic conservation laws , 2017, J. Comput. Phys..

[22]  Jun Zhu,et al.  A new third order finite volume weighted essentially non-oscillatory scheme on tetrahedral meshes , 2017, J. Comput. Phys..

[23]  Jianxian Qiu,et al.  Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method: one-dimensional case , 2004 .

[24]  J. Qiu,et al.  Hermite Weno Schemes with Strong Stability Preserving Multi-Step Temporal Discretization Methods for Conservation Laws , 2017 .

[25]  G. Russo,et al.  Central WENO schemes for hyperbolic systems of conservation laws , 1999 .

[26]  Guy Capdeville,et al.  A Hermite upwind WENO scheme for solving hyperbolic conservation laws , 2008, J. Comput. Phys..

[27]  João Luiz F. Azevedo,et al.  High‐order ENO and WENO schemes for unstructured grids , 2007 .

[28]  Jianxian Qiu,et al.  Finite Difference Hermite WENO Schemes for Hyperbolic Conservation Laws , 2014, Journal of Scientific Computing.

[29]  Nikolaus A. Adams,et al.  A family of high-order targeted ENO schemes for compressible-fluid simulations , 2016, J. Comput. Phys..

[30]  J. M. Powers,et al.  Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points , 2005 .

[31]  Jianxian Qiu,et al.  A Hermite WENO scheme with artificial linear weights for hyperbolic conservation laws , 2020, J. Comput. Phys..

[32]  Lin Fu,et al.  A very-high-order TENO scheme for all-speed gas dynamics and turbulence , 2019, Comput. Phys. Commun..

[33]  Jun Zhu,et al.  A New Type of Finite Volume WENO Schemes for Hyperbolic Conservation Laws , 2017, J. Sci. Comput..

[34]  Jun Zhu,et al.  A new fifth order finite difference WENO scheme for solving hyperbolic conservation laws , 2016, J. Comput. Phys..

[35]  Jianxian Qiu,et al.  A hybrid Hermite WENO scheme for hyperbolic conservation laws , 2019, J. Comput. Phys..