Mechanical performance of glue joints in structural hardwood elements

The fracture behaviour of bond lines in hardwood has been studied. The joints of a phenol resorcinol formaldehyde (PRF) resin and a onecomponent polyurethane (PUR) adhesive with European beech wood (Fagus silvatica L.) adherends were examined for their fracture toughness (Kc). The initial crack tip was placed directly in the adhesive as a thin silicon film. Thereby, the examination of the bond line, and not the solid wood, can be assured. Five different load angles were applied, from fracture mode 1 to mode 2, with an Arcan test mount. Additionally, three sample series conditioned at the relative humidities (RH) of 50%, 65% and 95% of the surrounding air were tested. The results clearly show an increasing Kc of both adhesives with increasing shear stresses. This observation is valid for all RHs, but the differences decrease with increasing RH. The moisture dependency is more pronounced in PUR than in PRF glue joints. PUR generally shows a lowerKc than PRF, with the only exceptions being KI,c and KII,c in dry climate. The subsequent crack propagation in the PRF samples mainly takes place in the wood adherend, whereas, in the PUR samples, the cracks remain within the bond line (adhesive failure). Nevertheless, the performance of PUR glue joints is not worse than that of the solid wood, which can be attributed to the ductile behaviour of the adhesive.

[1]  E. C. Zhu,et al.  Modeling crack propagation in wood by extended finite element method , 2014, European Journal of Wood and Wood Products.

[2]  Peter Niemz,et al.  Holzwerkstoffe und Leime , 2002 .

[3]  W. Sonderegger Experimental and theoretical investigations on the heat and water transport in wood and wood-based materials , 2011 .

[4]  P. Niemz,et al.  Possible fields of hardwood application , 2010 .

[5]  Y. Murakami Stress Intensity Factors Handbook , 2006 .

[6]  A. V. Pocius,et al.  Adhesion and Adhesives Technology: An Introduction , 1996 .

[7]  Helena Cruz,et al.  A review of factors influencing the durability of structural bonded timber joints , 2009 .

[8]  C. Inglis Stresses in a plate due to the presence of cracks and sharp corners , 1913 .

[9]  Erik Serrano,et al.  Adhesive Joints in Timber Engineering. Modelling and Testing of Fracture Properties , 2000 .

[10]  B. River Fracture of Adhesive-Bonded Wood Joints , 2003 .

[11]  S. Stanzl-Tschegg,et al.  New splitting method for wood fracture characterization , 2004, Wood Science and Technology.

[12]  G. Irwin ANALYSIS OF STRESS AND STRAINS NEAR THE END OF A CRACK TRAVERSING A PLATE , 1957 .

[13]  Peter Niemz,et al.  Improvement of tensile shear strength and wood failure percentage of 1C PUR bonded wooden joints at wet stage by means of DMF priming , 2014, European Journal of Wood and Wood Products.

[14]  Michaela Zauner In-situ synchrotron based tomographic microscopy of uniaxially loaded wood , 2014 .

[15]  J C Kellar Ewen Key issues in selecting the right adhesive , 2010 .

[16]  Michael Schmidt,et al.  Verklebung von Buchenholz für tragende Holzbauteile , 2010, European Journal of Wood and Wood Products.

[17]  P. Niemz,et al.  Influence of wood machining on tensile shear strength and wood failure percentage of one-component polyurethane bonded wooden joints after wetting , 2014 .

[18]  C. Vick,et al.  HYDROXYMETHYLATED RESORCINOL COUPLING AGENT FOR ENHANCED DURABILITY OF , 1995 .

[19]  J. Konnerth,et al.  Mechanical properties of adhesives for bonding wood—A review , 2013 .

[20]  Peter Niemz,et al.  Moisture-dependent elastic and strength anisotropy of European beech wood in tension , 2012, Journal of Materials Science.

[21]  A. A. Griffith The Phenomena of Rupture and Flow in Solids , 1921 .

[22]  J. Mcbain,et al.  On Adhesives and Adhesive Action , 1924 .

[23]  E. Lehmann,et al.  Quantitative determination of bound water diffusion in multilayer boards by means of neutron imaging , 2010, European Journal of Wood and Wood Products.

[24]  Stefan Hering,et al.  Charakterisierung und Modellierung der Materialeigenschaften von Rotbuchenholz zur Simulation von Holzverklebungen , 2011 .

[25]  I. Smith,et al.  Bridging crack model for fracture of spruce , 2002 .

[26]  I. Johansson,et al.  Weak boundary layers on wood surfaces , 2000 .

[27]  W. Jablonski,et al.  Zur Beurteilung der mechanischen Eigenschaften von Preßvollholz , 1984, Holz als Roh- und Werkstoff.

[28]  Ulrich Müller,et al.  Direct measurement of strain distribution along a wood bond line. Part 2: Effects of adhesive penetration on strain distribution , 2005 .

[29]  Michael Obersriebnig,et al.  Comparative adhesion analysis at glue joints in European beech and Norway spruce wood by means of nanoindentation , 2014 .

[30]  P. Niemz,et al.  Determination of Young’s and shear moduli of common yew and Norway spruce by means of ultrasonic waves , 2007, Wood Science and Technology.

[31]  Svetlana Vasic,et al.  Experimental and numerical investigation of wood fracture mechanisms at different humidity levels , 2007 .

[32]  K. Bethge,et al.  A NEW FAILURE CRITERION FOR NON DECAYED SOLITARY TREES , 2002 .

[33]  A. Frey-Wyssling Über den Feinbau der Stauchlinien in überbeanspruchtem holz , 1953, Holz als Roh- und Werkstoff.

[34]  H. Lemmetyinen,et al.  Monitoring water uptake of polyurethanes by in situ fluorescence technique , 2001 .

[35]  Erik Serrano,et al.  Adhesive joints for structural timber/glass applications: Experimental testing and evaluation methods , 2012 .

[36]  Sigurdur Ormarsson,et al.  Numerical Analysis of Moisture-Related Distortion in Sawn Timber , 1999 .

[37]  Y. Lai,et al.  Variation of the phenolic hydroxyl group content in wood lignins , 1991, Wood Science and Technology.

[38]  P. Niemz,et al.  Thermal behaviour of Norway spruce and European beech in and between the principal anatomical directions , 2011 .

[39]  Alan A. Marra,et al.  Technology of Wood Bonding : Principles in Practice , 1992 .

[40]  A. Act,et al.  VARIATION OF WOOD ACIDITY IN HARD AND SOFTWOODS DURING STORAGE UP TO ONE YEAR , 2008 .

[41]  P. Niemz,et al.  FRACTURE PROPERTIES OF ADHESIVE JOINTS UNDER MECHANICAL STRESSES , 2013 .

[42]  A. Wagenführ,et al.  Taschenbuch der Holztechnik , 2012 .

[43]  Alfred J. Stamm,et al.  The fiber-saturation point of wood as obtained from electrical conductivity measurements , 1929 .

[44]  A. Harte,et al.  Bond quality at the FRP–wood interface using wood-laminating adhesives , 2009 .

[45]  Michael K. Schmidt Die Verklebung von Buchenholz für tragende Holzbauteile unter besonderer Berücksichtigung der Farbverkernung , 2014 .

[46]  W. Gindl,et al.  Mechanical characterisation of wood-adhesive interphase cell walls by nanoindentation , 2006 .

[47]  P. Niemz,et al.  FIBRE AND ADHESIVE BRIDGING AT GLUE JOINTS IN EUROPEAN BEECH WOOD , 2014 .

[48]  C. Vick,et al.  Structurally durable epoxy bonds to aircraft woods , 1997 .

[49]  H. Reinhardt,et al.  Delaminierungseigenschaften und Scherfestigkeiten von verklebten rotkernigen Buchenholzlamellen , 2006, Holz als Roh- und Werkstoff.

[51]  A. Frey-Wyssling Die Anisotropie des Schwindmaßes auf dem Holzquerschnitt , 1940, Holz als Roh- und Werkstoff.

[52]  G. Scurfield,et al.  Failure of wood under load applied parallel to grain: A study using scanning electron microscopy , 1971 .

[53]  P. Niemz,et al.  Fracture characterisation of yew (Taxus baccata L.) and spruce (Picea abies [L.] Karst.) in the radial-tangential and tangential-radial crack propagation system by a micro wedge splitting test , 2007 .

[54]  B. Burchardt Advances in polyurethane structural adhesives , 2010 .

[55]  Michael Obersriebnig,et al.  Evaluating fundamental position-dependent differences in wood cell wall adhesion using nanoindentation , 2013, International Journal of Adhesion and Adhesives.

[56]  A. Reiterer,et al.  The influence of moisture content on the mode I fracture behaviour of sprucewood , 2002 .

[57]  W. Forsling,et al.  Wettability and spectroscopic characterization of silylated wood samples , 2006 .

[58]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[59]  Tomasz Ożyhar,et al.  Moisture and time-dependent orthotropic mechanical characterization of beech wood , 2013 .

[60]  Antonio Pizzi,et al.  Advanced Wood Adhesives Technology , 1994 .

[61]  Hans Albert Richard,et al.  A loading device for the creation of mixed mode in fracture mechanics , 1983 .

[62]  P. Niemz,et al.  Mixed-mode fracture toughness of bond lines of PRF and PUR adhesives in European beech wood , 2015 .

[63]  L. Vorreiter Gehärtete und mit Metall oder Öl getränkte Hölzer , 1942, Holz als Roh- und Werkstoff.

[64]  Oliver Kläusler Improvement of One-Component Polyurethane Bonded Wooden Joints under Wet Conditions , 2014 .

[65]  F. López-Suevos,et al.  Hydroxymethylated Resorcinol (HMR) and Novolak-Based HMR (n-HMR) Primers to Enhance Bond Durability of Eucalyptus globulus Glulams , 2009 .

[66]  R. E. Carlson,et al.  Monotone Piecewise Cubic Interpolation , 1980 .

[67]  J. Rice A path-independent integral and the approximate analysis of strain , 1968 .

[68]  D. Packham The Mechanical Theory of Adhesion—Changing Perceptions 1925-1991 , 1992 .

[69]  G. D. Davis Surface Treatments of Selected Materials , 2011 .

[70]  P. Fratzl,et al.  Mechanical properties of spruce wood cell walls by nanoindentation , 2004 .

[71]  Mohammad M. Hassani Adhesive Bonding of Structural Hardwood Elements , 2015 .

[72]  R. Rowell,et al.  Swelling of wood , 1934, Wood Science and Technology.

[73]  R. Wimmer,et al.  Longitudinal hardness and Young's modulus of spruce tracheid secondary walls using nanoindentation technique , 1997, Wood Science and Technology.

[74]  S. Griffis EDITOR , 1997, Journal of Navigation.

[75]  W. Gindl,et al.  Cell-wall hardness and Young's modulus of melamine-modified spruce wood by nano-indentation , 2002 .

[76]  C. Frihart Wood Structure and Adhesive Bond Strength , 2008 .

[77]  Stefanie E. Stanzl-Tschegg,et al.  Fracture characteristics of different wood species under mode I loading perpendicular to the grain , 2002 .

[78]  Jozef Keckes,et al.  Actual versus apparent within cell wall variability of nanoindentation results from wood cell walls related to cellulose microfibril angle , 2009, Journal of Materials Science.

[79]  Ingo Burgert Über die mechanische Bedeutung der Holzstrahlen | The mechanical relevance of wood rays , 2003 .

[80]  A. Majano-Majano,et al.  The fracture toughness and properties of thermally modified beech and ash at different moisture contents , 2010, Wood Science and Technology.

[81]  Falk K. Wittel,et al.  Adhesive penetration in beech wood: experiments , 2011, Wood Science and Technology.

[82]  J. Gagliano An Improved Method for the Fracture Cleavage Testing of Adhesively-Bonded Wood , 2001 .

[83]  P. Niemz,et al.  Influence of moisture on stress–strain behaviour of adhesives used for structural bonding of wood , 2013 .

[84]  A. G. Zink,et al.  Ultrastructural analysis of softwood fracture surfaces , 1994, Wood Science and Technology.

[85]  Henrik Danielsson,et al.  A probabilistic fracture mechanics method and strength analysis of glulam beams with holes , 2011, European Journal of Wood and Wood Products.

[86]  Sebastian Clauss Structure-property relationships of one-component moisture-curing polyurethane adhesives under thermal load , 2011 .

[87]  P. Niemz,et al.  Influence of the adhesive formulation on the mechanical properties and bonding performance of polyurethane prepolymers , 2011 .

[88]  C. Vick,et al.  Strength and durability of one-part polyurethane adhesive bonds to wood , 1998 .

[89]  Charles R. Frihart,et al.  Adhesive Groups and How They Relate to the Durability of Bonded Wood , 2009 .

[90]  Meng Gong,et al.  Fracture and fatigue in wood , 2003 .

[91]  Falk K. Wittel,et al.  Pore space analysis of beech wood: The vessel network , 2010, 1509.03651.

[92]  I BOEREMA,et al.  [A synthesis]. , 1960, Nederlands tijdschrift voor geneeskunde.

[93]  Michael Obersriebnig,et al.  Determination of adhesive energy at the wood cell-wall/UF interface by nanoindentation (NI) , 2012 .